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Deterministic iterated function systems

Let (X , d) be a compact metric space. A (deterministic) iterated
function system (IFS) is a finite set of contraction mappings on X . Given
such an IFS, {S1, . . . ,Sm}, it is a fundamental result of Hutchinson that
there exists a unique non-empty compact set F satisfying

F =
m⋃
i=1

Si (F )

which is called the attractor of the IFS.

This construction can be randomised in many natural ways.
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Random iterated function systems

We adopt the following randomisation:

(1) Let I = {I1, . . . , IN} be a finite collection of deterministic IFSs

(2) Each deterministic IFS takes the form Ii = {Si,j}j∈Ii for a finite
index set, Ii , and each map, Si,j , is a contracting bi-Lipschitz
self-map on X

(3) Let D = {1, . . . ,N}, Ω = DN and let ω = (ω1, ω2, . . . ) ∈ Ω. Define
the attractor of I corresponding to ω by

Fω =
⋂
k

⋃
i1∈Iω1

,...,ik∈Iωk

Sω1,i1 ◦ · · · ◦ Sωk ,ik (K ).

We have thus defined a continuum of random attractors {Fω}ω∈Ω and by
‘randomly choosing’ ω ∈ Ω, we ‘randomly choose’ an attractor Fω.
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What does a generic attractor look like?

The most common approach to answering this question is probabilistic.

(1) Associate a probability vector, p = (p1, . . . , pN), with D

(2) Choose each entry in ω randomly and independently with respect to
p

(3) This induces a probability measure, P, on Ω given by

P =
∏
N

N∑
i=1

pi δi

(4) We say a property of the random attractors is generic if it occurs for
P-almost all ω ∈ Ω
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Random self-similar sets

Theorem (Hambly ’97; Barnsley, Hutchinson, Stenflo ’05)
Let I = {I1, . . . , IN} be an RIFS consisting of similarity maps on Rn with
associated probability vector p = (p1, . . . , pN). Assume that I satisfies
the UOSC and let s be the solution of

N∏
i=1

(∑
j∈Ii

Lip(Si,j)
s

)pi

= 1. (1)

Then, for P-almost all ω ∈ Ω, dimH Fω = dimB Fω = dimP Fω = s.

Equation (1) should be viewed as a randomised version of Hutchison’s
formula.

Key tool in the proof: P is ergodic with respect to the left shift on Ω.
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A different approach...

Let (K , d) be a complete metric space.

A set N ⊆ K is nowhere dense if for all x ∈ N and for all r > 0 there
exists a point y ∈ K \ N and t > 0 such that

B(y , t) ⊆ B(x , r) \ N.

A set M is said to be of the first category, or, meagre, if it can be written
as a countable union of nowhere dense sets.

We think of a meagre set as being small and the complement of a
meagre set as being big.

A set T ⊆ K is residual or co-meagre, if K \ T is meagre.

A property is called typical if the set of points which have the property is

residual.
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A different approach...

We will now ask the question: what does Fω look like for a typical ω ∈ Ω?

Note: We turn Ω into a complete metric space by equipping it with the
metric dΩ where, for u = (u1, u2, . . . ) 6= v = (v1, v2, . . . ) ∈ ω,

dΩ(u, v) = 2−k

where k = min{n ∈ N : un 6= vn}.
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Results: good behaviour

Theorem (F)

Let G : (0,∞)→ (0,∞) be a gauge function.

(1) If infu∈Ω HG (Fu) = 0, then for a typical ω ∈ Ω, we have

HG (Fω) = 0

(2) If G is doubling and supu∈Ω PG (Fu) =∞, then for a typical ω ∈ Ω,
we have

PG (Fω) =∞
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Results: good behaviour

Theorem (F)

(3) The typical Hausdorff dimension is infimal, i.e., for a typical ω ∈ Ω,
we have

dimH Fω = inf
u∈Ω

dimH Fu

(4) The typical packing dimension and upper box dimension are
supremal and, in fact, for a typical ω ∈ Ω, we have

dimBFω = dimP Fω = sup
u∈Ω

dimBFu = sup
u∈Ω

dimP Fu

(5) The typical lower box dimension is infimal, i.e, for a typical ω ∈ Ω,
we have

dimBFω = inf
u∈Ω

dimBFu
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Results: good behaviour

Perhaps surpisingly, the above results hold without assuming any
separation conditions and the maps can be arbitrary bi-Lipschitz
contractions.
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Results: bad behaviour

(1) If 0 < infu∈Ω HG (Fu) <∞ or 0 < supu∈Ω PG (Fu) <∞, then we
do not know what the typical measures are.

(2) The typical packing and Hausdorff measures are not consistently
infimal or supremal.

(3) The infimal Hausdorff dimension is not (in general) the minimum of
the Hausdorff dimensions of the attractors of the individual
determinsitc IFS. So we cannot usually compute the typical
dimensions explicitly.
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Can we do better in a simpler setting?

Since the above results are obtained in very general circumstances,
perhaps we can say something more precise in a simpler setting.

(1) Assume X = [0, 1]d

(2) Assume all the maps are similarities

(3) Assume the UOSC

This is a much simpler setting, but we can obtain more precise results!
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Results in the self-similar setting

For each i ∈ D, let si be the solution of∑
j∈Ii

Lip(Si,j)
si = 1

and write smin = mini∈D si and smax = maxi∈D si .

Theorem (F)

(1) supω∈Ω dimP Fω = supω∈Ω dimBFω = smax

(2) 0 < supω∈Ω Psmax (Fω) <∞

(3) infω∈Ω dimH Fω = infω∈Ω dimBFω = smin

(4) 0 < infω∈Ω Hsmin (Fω) <∞
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Results in the self-similar setting

Write Hmin = infω∈Ω Hsmin (Fω) and Pmax = supω∈Ω Psmax (Fω).

Theorem

(1) If smin = smax = s, then for a typical ω ∈ Ω,

dimH Fω = dimP Fω = s

and
0 < Hs(Fω) = Hmin 6 Pmax = Ps(Fω) <∞

(2) If smin < smax, then for a typical ω ∈ Ω,

dimH Fω = smin < smax = dimP Fω,

Hsmin (Fω) =∞

and
Psmax (Fω) = 0
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Future work

(1) Is the typical measure always extremal?

(2) Can we say anything more about the typical dimensions in the
general case? i.e., can we compute the extremal dimensions
explicitly?

(3) Can we obtain similar results for a more general random model?
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Thank you!
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