Scaling scenery of $(\times m, \times n)$ invariant measures

Jonathan M. Fraser The University of Warwick, UK

Numbers in Ergodic Theory, Leiden, 23rd May 2014

joint work with Andrew Ferguson and Tuomas Sahlsten

My coauthors

My coauthors

Key idea: One can understand a set or measure by understanding its tangents.

Key idea: One can understand a set or measure by understanding its tangents.

Key idea: One can understand a set or measure by understanding its tangents.

Refinement: One can understand a set or measure by understanding the dynamics of the process of zooming in to its tangents.

• Ideas date back to Hillel Furstenberg in the 60s-70s, but rediscovered recently by Furstenberg (2008), Gavish (2011), Hochman-Shmerkin (2012) and Hochman (2010/2013).

Key idea: One can understand a set or measure by understanding its tangents.

- Ideas date back to Hillel Furstenberg in the 60s-70s, but rediscovered recently by Furstenberg (2008), Gavish (2011), Hochman-Shmerkin (2012) and Hochman (2010/2013).
- Hochman-Shmerkin (2012): Applications to projection theorems, which yielded a solution to a conjecture of Furstenberg.

Key idea: One can understand a set or measure by understanding its tangents.

- Ideas date back to Hillel Furstenberg in the 60s-70s, but rediscovered recently by Furstenberg (2008), Gavish (2011), Hochman-Shmerkin (2012) and Hochman (2010/2013).
- Hochman-Shmerkin (2012): Applications to projection theorems, which yielded a solution to a conjecture of Furstenberg.
- Hochman-Shmerkin (2013): Applications to equidistribution problems in metric number theory.

Key idea: One can understand a set or measure by understanding its tangents.

- Ideas date back to Hillel Furstenberg in the 60s-70s, but rediscovered recently by Furstenberg (2008), Gavish (2011), Hochman-Shmerkin (2012) and Hochman (2010/2013).
- Hochman-Shmerkin (2012): Applications to projection theorems, which yielded a solution to a conjecture of Furstenberg.
- Hochman-Shmerkin (2013): Applications to equidistribution problems in metric number theory.
- Orponen (2012): Applications to distance set problems.

Key idea: One can understand a set or measure by understanding its tangents.

- Ideas date back to Hillel Furstenberg in the 60s-70s, but rediscovered recently by Furstenberg (2008), Gavish (2011), Hochman-Shmerkin (2012) and Hochman (2010/2013).
- Hochman-Shmerkin (2012): Applications to projection theorems, which yielded a solution to a conjecture of Furstenberg.
- Hochman-Shmerkin (2013): Applications to equidistribution problems in metric number theory.
- Orponen (2012): Applications to distance set problems.
- Käenmäki-Sahlsten-Shmerkin (2014): applications to Marstrand's conical density theorems, rectifiability and porosity.

• Let $\{\mathcal{D}_k\}_{k\in\mathbb{N}}$ be the filtration of \mathbb{R}^d by half open dyadic cubes.

- Let $\{\mathcal{D}_k\}_{k\in\mathbb{N}}$ be the filtration of \mathbb{R}^d by half open dyadic cubes.
- Let $T_D : \mathbb{R}^d \to \mathbb{R}^d$ be the orientation preserving similitude that maps a dyadic cube D onto $[0, 1)^d$.

- Let $\{\mathcal{D}_k\}_{k\in\mathbb{N}}$ be the filtration of \mathbb{R}^d by half open dyadic cubes.
- Let T_D : ℝ^d → ℝ^d be the orientation preserving similitude that maps a dyadic cube D onto [0, 1)^d.
- The magnification μ^D of a measure $\mu \in \mathcal{P}([0,1)^d)$ to D with $\mu(D)>0$ is

$$\mu^{D} = \frac{1}{\mu(D)} T_{D}(\mu|_{D}) \in \mathcal{P}([0,1)^{d})$$

- Let $\{\mathcal{D}_k\}_{k\in\mathbb{N}}$ be the filtration of \mathbb{R}^d by half open dyadic cubes.
- Let T_D : ℝ^d → ℝ^d be the orientation preserving similitude that maps a dyadic cube D onto [0, 1)^d.
- The magnification μ^D of a measure $\mu \in \mathcal{P}([0,1)^d)$ to D with $\mu(D) > 0$ is

$$\mu^{D} = \frac{1}{\mu(D)} T_{D}(\mu|_{D}) \in \mathcal{P}([0,1)^{d})$$

• If $k \in \mathbb{N}$, let $D_k(x) \in \mathcal{D}_k$ be the cube with $x \in D_k(x)$. Write

 $\Xi = \{(x,\mu): \mu \in \mathcal{P}([0,1)^d) \text{ and } \mu(D_k(x)) > 0 \text{ for all } k \in \mathbb{N}\}$

- Let $\{\mathcal{D}_k\}_{k\in\mathbb{N}}$ be the filtration of \mathbb{R}^d by half open dyadic cubes.
- Let $T_D : \mathbb{R}^d \to \mathbb{R}^d$ be the orientation preserving similitude that maps a dyadic cube D onto $[0, 1)^d$.
- The magnification μ^D of a measure $\mu \in \mathcal{P}([0,1)^d)$ to D with $\mu(D)>0$ is

$$\mu^{D} = \frac{1}{\mu(D)} T_{D}(\mu|_{D}) \in \mathcal{P}([0,1)^{d})$$

• If $k \in \mathbb{N}$, let $D_k(x) \in \mathcal{D}_k$ be the cube with $x \in D_k(x)$. Write

$$\Xi = \{(x,\mu): \mu \in \mathcal{P}([0,1)^d) \text{ and } \mu(D_k(x)) > 0 \text{ for all } k \in \mathbb{N}\}$$

and define the magnification operator $M:\Xi\to\Xi$ by

$$M(x,\mu) = (T_{D_1(x)}(x),\mu^{D_1(x)}).$$

Iterating $\boldsymbol{M}\textsc{,}$ we see that

$$M^{k}(x,\mu) = (T_{D_{k}(x)}(x),\mu^{D_{k}(x)}), \quad (x,\mu) \in \Xi.$$

Iterating M, we see that

$$M^{k}(x,\mu) = (T_{D_{k}(x)}(x),\mu^{D_{k}(x)}), \quad (x,\mu) \in \Xi.$$

• Let $(x, \mu) \in \Xi$ and $N \in \mathbb{N}$. The Nth scenery distribution of μ at x is

$$\frac{1}{N}\sum_{k=0}^{N-1}\delta_{M^k(x,\mu)}\in\mathcal{P}(\Xi).$$

Iterating M, we see that

$$M^{k}(x,\mu) = (T_{D_{k}(x)}(x),\mu^{D_{k}(x)}), \quad (x,\mu) \in \Xi.$$

• Let $(x, \mu) \in \Xi$ and $N \in \mathbb{N}$. The Nth scenery distribution of μ at x is

$$\frac{1}{N}\sum_{k=0}^{N-1}\delta_{M^k(x,\mu)}\in\mathcal{P}(\Xi).$$

 A micromeasure distribution of μ at x is an accumulation point of the scenery distributions in P(Ξ) w.r.t. the weak topology.

Iterating M, we see that

$$M^{k}(x,\mu) = (T_{D_{k}(x)}(x),\mu^{D_{k}(x)}), \quad (x,\mu) \in \Xi.$$

• Let $(x, \mu) \in \Xi$ and $N \in \mathbb{N}$. The Nth scenery distribution of μ at x is

$$\frac{1}{N}\sum_{k=0}^{N-1}\delta_{M^k(x,\mu)}\in\mathcal{P}(\Xi).$$

- A micromeasure distribution of μ at x is an accumulation point of the scenery distributions in P(Ξ) w.r.t. the weak topology.
- The measure component of a micromeasure distribution is supported on the micromeasures of μ at x (i.e. accumulation points of the 'minimeasures' $\mu^{D_k(x)}$, as $k \to \infty$)

Iterating M, we see that

$$M^{k}(x,\mu) = (T_{D_{k}(x)}(x),\mu^{D_{k}(x)}), \quad (x,\mu) \in \Xi.$$

• Let $(x, \mu) \in \Xi$ and $N \in \mathbb{N}$. The Nth scenery distribution of μ at x is

$$\frac{1}{N}\sum_{k=0}^{N-1}\delta_{M^k(x,\mu)}\in\mathcal{P}(\Xi).$$

- A micromeasure distribution of μ at x is an accumulation point of the scenery distributions in P(Ξ) w.r.t. the weak topology.
- The measure component of a micromeasure distribution is supported on the micromeasures of μ at x (i.e. accumulation points of the 'minimeasures' $\mu^{D_k(x)}$, as $k \to \infty$)

Let \tilde{Q} be the measure component of an M invariant measure Q.

Let \tilde{Q} be the measure component of an M invariant measure Q.

 Q is a CP distribution, if the choice of (x, μ) according to Q can be made by first choosing μ according to Q̃ and then x according to μ.

Let \tilde{Q} be the measure component of an M invariant measure Q.

• Q is a **CP distribution**, if the choice of (x, μ) according to Q can be made by first choosing μ according to \tilde{Q} and then x according to μ . I.e. we have a disintegration

$$\int f(x,\mu) \, dQ(x,\mu) = \iint f(x,\mu) \, d\mu(x) \, d\tilde{Q}(\mu),$$

for any continuous $f:\Xi\to\mathbb{R}$.

Let \tilde{Q} be the measure component of an M invariant measure Q.

• Q is a **CP distribution**, if the choice of (x, μ) according to Q can be made by first choosing μ according to \tilde{Q} and then x according to μ . I.e. we have a disintegration

$$\int f(x,\mu) \, dQ(x,\mu) = \iint f(x,\mu) \, d\mu(x) \, d\tilde{Q}(\mu),$$

for any continuous $f:\Xi\to\mathbb{R}$.

 A CP distribution Q is (M-)ergodic if the Q measure of any M invariant set is either 0 or 1. I.e. A = M⁻¹A ⇒ Q(A) ∈ {0,1}.

Let \tilde{Q} be the measure component of an M invariant measure Q.

• Q is a **CP distribution**, if the choice of (x, μ) according to Q can be made by first choosing μ according to \tilde{Q} and then x according to μ . I.e. we have a disintegration

$$\int f(x,\mu) \, dQ(x,\mu) = \iint f(x,\mu) \, d\mu(x) \, d\tilde{Q}(\mu),$$

for any continuous $f:\Xi\to\mathbb{R}$.

٠

- A CP distribution Q is (M-)ergodic if the Q measure of any M invariant set is either 0 or 1. I.e. A = M⁻¹A ⇒ Q(A) ∈ {0,1}.
- It is also possible to use more general (regular) filtrations than dyadic. Then the dynamics is described by a Markov process (a **CP chain**) and the **CP distribution** is the stationary measure for this chain.

A CP distribution Q is $\mbox{generated}$ by a measure $\mu,$ if

(1) Q is the **only** micromeasure distribution of μ at μ almost every x;

A CP distribution Q is $\mbox{generated}$ by a measure $\mu,$ if

- (1) Q is the **only** micromeasure distribution of μ at μ almost every x;
- (2) and at μ almost every x the $q\mbox{-sparse}$ scenery distributions

$$\frac{1}{N}\sum_{k=0}^{N-1}\delta_{M^{qk}(x,\mu)}\in\mathcal{P}(\Xi)$$

converge to some distribution Q_q for any $q \in \mathbb{N}$, where each Q_q may be different from Q.

A CP distribution Q is generated by a measure $\mu,$ if

- (1) Q is the **only** micromeasure distribution of μ at μ almost every x;
- (2) and at μ almost every x the q-sparse scenery distributions

$$\frac{1}{N}\sum_{k=0}^{N-1}\delta_{M^{qk}(x,\mu)}\in\mathcal{P}(\Xi)$$

converge to some distribution Q_q for any $q \in \mathbb{N}$, where each Q_q may be different from Q.

Condition (2) seems strange at first sight, but is essential to carry geometric information from the micromeasure back to μ .

In 'nice' situations, (2) does not cause any problems in the proofs and often $Q_q = Q$ for all $q \in \mathbb{N}$.

Example: CP chains in the conformal setting

When one zooms in on a set or measure with a self-conformal structure, roughly speaking, one expects the tangent objects to be the same as the original object.

Example: CP chains in the conformal setting

When one zooms in on a set or measure with a self-conformal structure, roughly speaking, one expects the tangent objects to be the same as the original object.

Proposition (Hochman-Shmerkin 2012)

Let μ be a self-similar measure in \mathbb{R}^d satisfying the strong separation condition. Then μ generates an ergodic CP chain Q for the dyadic partition operator supported on the dyadic micromeasures of μ such that the dyadic micromeasures ν are of the form

$$\nu = \mu(B)^{-1} S(\mu|_B)$$

for some Borel-set B with $\mu(B) > 0$ and some similitude S of \mathbb{R}^d . Moreover, the original measure can be recovered from a given micromeasure ν as $\mu = \nu(B')^{-1}S'(\nu|'_B)$, for some Borel-set B' and similitude S'.

Example: dimensions of projections

• Let $\Pi_{d,k}$ be the set of all orthogonal projections $\mathbb{R}^d \to \mathbb{R}^k$, k < d.

Example: dimensions of projections

- Let $\Pi_{d,k}$ be the set of all orthogonal projections $\mathbb{R}^d \to \mathbb{R}^k$, k < d.
- For a CP distribution Q, write

$$E(\pi) = \int \dim \pi \nu \, d\tilde{Q}(\nu), \quad \pi \in \Pi_{d,k}.$$

i.e. the expected Hausdorff dimension of the projection $\pi\nu$ over micromeasures $\nu.$
Example: dimensions of projections

- Let $\Pi_{d,k}$ be the set of all orthogonal projections $\mathbb{R}^d \to \mathbb{R}^k$, k < d.
- For a CP distribution Q, write

$$E(\pi) = \int \dim \pi \nu \, d\tilde{Q}(\nu), \quad \pi \in \Pi_{d,k}.$$

i.e. the expected Hausdorff dimension of the projection $\pi\nu$ over micromeasures ν .

Theorem (Hochman-Shmerkin 2012)

Suppose μ generates an ergodic CP distribution Q. Then (1) The map $E: \Pi_{d,k} \to \mathbb{R}$ is lower semicontinuous.

Example: dimensions of projections

- Let $\Pi_{d,k}$ be the set of all orthogonal projections $\mathbb{R}^d \to \mathbb{R}^k$, k < d.
- For a CP distribution Q, write

$$E(\pi) = \int \dim \pi \nu \, d\tilde{Q}(\nu), \quad \pi \in \Pi_{d,k}.$$

i.e. the expected Hausdorff dimension of the projection $\pi\nu$ over micromeasures ν .

Theorem (Hochman-Shmerkin 2012)

Suppose μ generates an ergodic CP distribution Q. Then

- (1) The map $E: \Pi_{d,k} \to \mathbb{R}$ is lower semicontinuous.
- (2) dim $\pi \mu \ge E(\pi)$ for any $\pi \in \Pi_{d,k}$.

Example: dimensions of projections

- Let $\Pi_{d,k}$ be the set of all orthogonal projections $\mathbb{R}^d \to \mathbb{R}^k$, k < d.
- For a CP distribution Q, write

$$E(\pi) = \int \dim \pi \nu \, d\tilde{Q}(\nu), \quad \pi \in \Pi_{d,k}.$$

i.e. the expected Hausdorff dimension of the projection $\pi\nu$ over micromeasures ν .

Theorem (Hochman-Shmerkin 2012)

Suppose μ generates an ergodic CP distribution Q. Then

- (1) The map $E: \Pi_{d,k} \to \mathbb{R}$ is lower semicontinuous.
- (2) dim $\pi \mu \ge E(\pi)$ for any $\pi \in \Pi_{d,k}$.
- (3) $E(\pi) = \min\{k, \dim \mu\}$ for a.e. $\pi \in \Pi_{d,k}$.

Example: a projection theorem for self-similar sets

Theorem (Hochman-Shmerkin 2012)

Let μ be a self-similar measure in \mathbb{R}^d satisfying the SSC and such that the IFS satisfies the **minimality assumption**. Then, for all $\pi \in \Pi_{d,k}$,

 $\dim \pi \mu = \min\{k, \dim \mu\}.$

Non-conformality I

Non-conformality I

Fix integers m < n and define $T_{m,n} : [0,1]^2 \rightarrow [0,1]^2$ by

$$T_{m,n}(x,y) = (T_m(x), T_n(x)),$$

where $T_m: [0,1] \rightarrow [0,1]$ is given by

$$T_m(x) = mx \mod 1.$$

Non-conformality I

Fix integers m < n and define $T_{m,n} : [0,1]^2 \rightarrow [0,1]^2$ by

$$T_{m,n}(x,y) = (T_m(x), T_n(x)),$$

where $T_m:[0,1] \rightarrow [0,1]$ is given by

$$T_m(x) = mx \mod 1.$$

It is often more convenient from a dynamical point of view to think of [0,1] as the unit circle \mathbb{T} and $[0,1]^2$ as the 2-torus \mathbb{T}^2 .

A non-empty compact set $K \subseteq [0,1]^2$ is called a **Bedford-McMullen** carpet, if $K = \bigcup_{i,j} S_{i,j}(K)$, where each $S_{i,j}$ is of the form

$$S_{i,j} = \left(\begin{array}{cc} 1/m & 0 \\ 0 & 1/n \end{array}
ight) + \left(\begin{array}{c} i \\ j \end{array}
ight),$$

for some indices $0 \le i \le m-1$ and $0 \le j \le n-1$.

A non-empty compact set $K \subseteq [0,1]^2$ is called a **Bedford-McMullen** carpet, if $K = \bigcup_{i,j} S_{i,j}(K)$, where each $S_{i,j}$ is of the form

$$S_{i,j} = \left(\begin{array}{cc} 1/m & 0 \\ 0 & 1/n \end{array}
ight) + \left(\begin{array}{c} i \\ j \end{array}
ight),$$

A non-empty compact set $K \subseteq [0,1]^2$ is called a **Bedford-McMullen** carpet, if $K = \bigcup_{i,j} S_{i,j}(K)$, where each $S_{i,j}$ is of the form

$$S_{i,j} = \left(\begin{array}{cc} 1/m & 0 \\ 0 & 1/n \end{array}
ight) + \left(\begin{array}{c} i \\ j \end{array}
ight),$$

A non-empty compact set $K \subseteq [0,1]^2$ is called a **Bedford-McMullen** carpet, if $K = \bigcup_{i,j} S_{i,j}(K)$, where each $S_{i,j}$ is of the form

$$S_{i,j} = \left(egin{array}{cc} 1/m & 0 \ 0 & 1/n \end{array}
ight) + \left(egin{array}{cc} i \ j \end{array}
ight),$$

A non-empty compact set $K \subseteq [0,1]^2$ is called a **Bedford-McMullen** carpet, if $K = \bigcup_{i,j} S_{i,j}(K)$, where each $S_{i,j}$ is of the form

$$S_{i,j} = \left(\begin{array}{cc} 1/m & 0 \\ 0 & 1/n \end{array}
ight) + \left(\begin{array}{c} i \\ j \end{array}
ight),$$

A non-empty compact set $K \subseteq [0,1]^2$ is called a **Bedford-McMullen** carpet, if $K = \bigcup_{i,j} S_{i,j}(K)$, where each $S_{i,j}$ is of the form

$$S_{i,j} = \left(\begin{array}{cc} 1/m & 0 \\ 0 & 1/n \end{array}
ight) + \left(\begin{array}{c} i \\ j \end{array}
ight),$$

A non-empty compact set $K \subseteq [0,1]^2$ is called a **Bedford-McMullen** carpet, if $K = \bigcup_{i,j} S_{i,j}(K)$, where each $S_{i,j}$ is of the form

$$S_{i,j} = \left(\begin{array}{cc} 1/m & 0 \\ 0 & 1/n \end{array}
ight) + \left(\begin{array}{c} i \\ j \end{array}
ight),$$

For a Bedford-McMullen IFS, associate to each $S_{i,j}$ a weight $p_{i,j} \in (0,1)$ such that $\sum p_{i,j} = 1$. Then the measure defined by

$$\mu = \sum_{i,j} p_{i,j} \ \mu \circ S_{i,j}^{-1}$$

is a self-affine Bernoulli measure, and unsurprisingly, is $T_{m,n}$ invariant.

For a Bedford-McMullen IFS, associate to each $S_{i,j}$ a weight $p_{i,j} \in (0,1)$ such that $\sum p_{i,j} = 1$. Then the measure defined by

$$\mu = \sum_{i,j} p_{i,j} \ \mu \circ S_{i,j}^{-1}$$

is a self-affine Bernoulli measure, and unsurprisingly, is $T_{m,n}$ invariant.

Bernoulli measures on Bedford-McMullen carpets are good examples to work with as they display many of the interesting features of $T_{m,n}$ invariant measures, whilst being very explicit and neat to write down.

• It was proved by Käenmäki and Bandt (2011) that under mild assumptions the 'tangent sets' of Bedford-McMullen carpets (wrt. Hausdorff distance) are of the form

 $[0,1]\times C,$

where ${\cal C}$ is some random Cantor set depending on the point you 'zoom in' at.

• It was proved by Käenmäki and Bandt (2011) that under mild assumptions the 'tangent sets' of Bedford-McMullen carpets (wrt. Hausdorff distance) are of the form

 $[0,1]\times C,$

where ${\cal C}$ is some random Cantor set depending on the point you 'zoom in' at.

 This product form of the tangents was exploited by Mackay (2011) and F (2013) when computing the Assouad dimension of Bedford-McMullen carpets.

Theorem (Ferguson, F, Sahlsten, 2013)

Any $T_{m,n}$ Bernoulli measure μ generates an ergodic CP distribution Q.

Theorem (Ferguson, F, Sahlsten, 2013)

Any $T_{m,n}$ Bernoulli measure μ generates an ergodic CP distribution Q.

• Measure component \tilde{Q} is the distribution of the random measure

$$S_t(\pi_1\mu \times \mu_x),$$

where $x \sim \pi_1 \mu$ and $\mu_x \in \mathcal{P}([0,1])$ is the conditional measure of μ with respect to the fibre $\pi_1^{-1}\{x\}$ and S_t is the unique affine map which sends $[0,1]^2$ to $[0,1/n^{t/2}] \times [0,n^{t/2}]$ and $t \in [0,1)$ is drawn according to Lebesgue in the 'irrational case' and according to a uniform measure on a periodic orbit in the 'rational case'.

Furstenberg's Conjecture (from the 1960s) If $X, Y \subset [0, 1]$ are closed and T_2 and T_3 invariant respectively. Then $\dim \pi(X \times Y) = \min\{1, \dim(X \times Y)\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$

Furstenberg's Conjecture (from the 1960s) If $X, Y \subset [0, 1]$ are closed and T_2 and T_3 invariant respectively. Then $\dim \pi(X \times Y) = \min\{1, \dim(X \times Y)\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$

Solved:

Theorem (Hochman-Shmerkin 2012)

If $\mu, \nu \in \mathcal{P}([0,1])$ are T_m and T_n invariant respectively and $\frac{\log m}{\log n} \in \mathbb{R} \setminus \mathbb{Q}$, then

$$\dim \pi_*(\mu \times \nu) = \min\{1, \dim(\mu \times \nu)\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$$

Obtained by constructing an ergodic CP distribution for $\mu \times \nu$.

Conjecture

Suppose μ is a $T_{m,n}$ invariant measure and $\frac{\log m}{\log n} \in \mathbb{R} \setminus \mathbb{Q}$, then

 $\dim \pi_*\mu = \min\{1, \dim \mu\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$

Conjecture

Suppose μ is a $T_{m,n}$ invariant measure and $\frac{\log m}{\log n} \in \mathbb{R} \setminus \mathbb{Q}$, then

dim $\pi_*\mu = \min\{1, \dim \mu\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$

Theorem (Ferguson-Jordan-Shmerkin 2010)

Suppose K is a Bedford-McMullen carpet with $\frac{\log m}{\log n} \in \mathbb{R} \setminus \mathbb{Q}$. Then

 $\dim \pi(K) = \min\{1, \dim K\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$

Conjecture

Suppose μ is a $T_{m,n}$ invariant measure and $\frac{\log m}{\log n} \in \mathbb{R} \setminus \mathbb{Q}$, then

 $\dim \pi_* \mu = \min\{1, \dim \mu\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$

Theorem (Ferguson-Jordan-Shmerkin 2010)

Suppose K is a Bedford-McMullen carpet with $\frac{\log m}{\log n} \in \mathbb{R} \setminus \mathbb{Q}$. Then

 $\dim \pi(K) = \min\{1, \dim K\}, \quad \pi \in \Pi_{2,1} \setminus \{\pi_1, \pi_2\}.$

Theorem (Ferguson, F, Sahlsten, 2013)

The conjecture above holds for $T_{m,n}$ invariant *Bernoulli* measures.

Recall...

Recall...

Theorem (Hochman-Shmerkin 2012)

Suppose μ generates an ergodic CP distribution Q. Then (1) The map $E : \Pi_{d,k} \to \mathbb{R}$ is lower semicontinuous. (2) $\dim \pi \mu \ge E(\pi)$ for any $\pi \in \Pi_{d,k}$. (3) $E(\pi) = \min\{k, \dim \mu\}$ for a.e. $\pi \in \Pi_{d,k}$.

Recall...

Theorem (Hochman-Shmerkin 2012)

Suppose μ generates an ergodic CP distribution Q. Then (1) The map $E: \prod_{d,k} \to \mathbb{R}$ is lower semicontinuous. (2) dim $\pi \mu > E(\pi)$ for any $\pi \in \Pi$

(2)
$$\dim \pi \mu \ge E(\pi)$$
 for any $\pi \in \Pi_{d,k}$.

(3)
$$E(\pi) = \min\{k, \dim \mu\}$$
 for a.e. $\pi \in \Pi_{d,k}$.

 In our setting, after suitable reparametrisation of Π_{2,1}, the map E is invariant under the irrational log m/log n rotation of the circle, so E is constant as a lower semicontinuous function on Π_{2,1} \ {π₁, π₂}. Application II: Distance sets

Application II: Distance sets The distance set of $K \subset \mathbb{R}^d$ is

$$D(K) = \{ |x - y| : x, y \in K \}.$$

Application II: Distance sets The distance set of $K \subset \mathbb{R}^d$ is

$$D(K) = \{ |x - y| : x, y \in K \}.$$

Distance set conjecture (Falconer, 1980s)

Suppose $K \subset \mathbb{R}^d$ is Borel and $\dim K \ge d/2$. Then $\dim D(K) = 1$. Moreover, if $\dim K > d/2$, then $\mathcal{L}^1(D(K)) > 0$.

Application II: Distance sets The distance set of $K \subset \mathbb{R}^d$ is

$$D(K) = \{ |x - y| : x, y \in K \}.$$

Distance set conjecture (Falconer, 1980s)

Suppose $K \subset \mathbb{R}^d$ is Borel and $\dim K \ge d/2$. Then $\dim D(K) = 1$. Moreover, if $\dim K > d/2$, then $\mathcal{L}^1(D(K)) > 0$.

Many people have been involved in the study of this conjecture.

• Bourgain (2003) found a small constant $\varepsilon > 0$ with

$$\dim D(K) \ge \frac{1}{2} + \varepsilon$$

whenever $K \subset \mathbb{R}^2$ with dim $K \geq 1$.

- Erdogan (2006) proved dim K > d/2 + 1/3 in ℝ^d yields positive measure for D(K).
- Orponen (2011) proved dim D(K) = 1 if K is a planar self-similar set with H¹(K) > 0.
Application II: Distance sets

Theorem (Ferguson, F, Sahlsten, 2013)

If μ on \mathbb{R}^2 generates an ergodic CP distribution and $\mathcal{H}^1(\operatorname{spt} \mu) > 0$, then $\dim D(\operatorname{spt} \mu) \geq \min\{1, \dim \mu\}.$

Application II: Distance sets

Theorem (Ferguson, F, Sahlsten, 2013)

If μ on \mathbb{R}^2 generates an ergodic CP distribution and $\mathcal{H}^1(\operatorname{spt} \mu) > 0$, then $\dim D(\operatorname{spt} \mu) \geq \min\{1, \dim \mu\}.$

Corollary (Ferguson, F, Sahlsten, 2013)

If K is a Bedford-McMullen carpet with dim $K \ge 1$, then dim D(K) = 1.

Application II: Distance sets

Theorem (Ferguson, F, Sahlsten, 2013)

If μ on \mathbb{R}^2 generates an ergodic CP distribution and $\mathcal{H}^1(\operatorname{spt} \mu) > 0$, then $\dim D(\operatorname{spt} \mu) \geq \min\{1, \dim \mu\}.$

Corollary (Ferguson, F, Sahlsten, 2013)

If K is a Bedford-McMullen carpet with $\dim K \ge 1$, then $\dim D(K) = 1$.

 Using standard dimension approximation theorems via Bedford-McMullen carpets, this yields results for other Lalley-Gatzouras and Barański type self-affine carpets as well.

• Scaling scenery of more general $T_{m,n}$ invariant measures (Gibbs measures with strong mixing properties?)

- Scaling scenery of more general $T_{m,n}$ invariant measures (Gibbs measures with strong mixing properties?)
- Scaling scenery of general self-affine/other non-conformal sets

- Scaling scenery of more general $T_{m,n}$ invariant measures (Gibbs measures with strong mixing properties?)
- Scaling scenery of general self-affine/other non-conformal sets
- Conformal Hausdorff dimension of self-affine carpets

- Scaling scenery of more general $T_{m,n}$ invariant measures (Gibbs measures with strong mixing properties?)
- Scaling scenery of general self-affine/other non-conformal sets
- Conformal Hausdorff dimension of self-affine carpets
- Applications of scaling scenery to other problems in geometric measure theory

Thank you!

Some References

C. Bandt, A. Käenmäki: Local structure of self-affine sets (2011), *Ergodic Theory and Dynamical Systems*, to appear

A. Ferguson, J. M. F., T. Sahlsten.: Scaling scenery of $(\times m, \times n)$ invariant measures (2013), preprint, 27 pages, arXiv:1307.5023

A. Ferguson, T. Jordan, P. Shmerkin: The Hausdorff dimension of the projections of self-affine carpets (2010), *Fundamenta Mathematicae* 209, 193–213

H. Furstenberg: Ergodic fractal measures and dimension conservation (2008), *Ergodic Theory and Dynamical Systems* 28, 405–422

M. Gavish: Measures with uniform scaling scenery (2011), *Ergodic Theory and Dynamical Systems* 31, 33–48

M. Hochman: Dynamics on fractals and fractal distributions (2010/2013), preprint, 62 pages, arXiv:1008.3731

M. Hochman, P. Shmerkin: Local entropy averages and projections of fractal measures (2012), *Annals of Mathematics* (2), 175(3):1001–1059

M. Hochman, P. Shmerkin: Equidistribution from fractals (2013), preprint, 44 pages, arXiv:1302.5792

J. Mackay: Assouad dimension of self-affine carpets (2011), *Conformal Geometry and Dynamics* 15, 177–187