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Magnification dynamics

Key idea: One can understand a set or measure by understanding its
tangents.

Refinement: One can understand a set or measure by understanding the
dynamics of the process of zooming in to its tangents.

• Ideas date back to Hillel Furstenberg in the 60s-70s, but rediscovered
recently by Furstenberg (2008), Gavish (2011), Hochman-Shmerkin
(2012) and Hochman (2010/2013).
• Hochman-Shmerkin (2012): Applications to projection theorems,

which yielded a solution to a conjecture of Furstenberg.
• Hochman-Shmerkin (2013): Applications to equidistribution problems

in metric number theory.
• Orponen (2012): Applications to distance set problems.
• Käenmäki-Sahlsten-Shmerkin (2014): applications to Marstrand’s

conical density theorems, rectifiability and porosity.
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Magnification dynamics

• Let {Dk}k∈N be the filtration of Rd by half open dyadic cubes.
• Let TD : Rd → Rd be the orientation preserving similitude that maps a

dyadic cube D onto [0, 1)d.
• The magnification µD of a measure µ ∈ P([0, 1)d) to D with
µ(D) > 0 is

µD =
1

µ(D)
TD(µ|D) ∈ P([0, 1)d)

• If k ∈ N, let Dk(x) ∈ Dk be the cube with x ∈ Dk(x). Write

Ξ = {(x, µ) : µ ∈ P([0, 1)d) and µ(Dk(x)) > 0 for all k ∈ N}

and define the magnification operator M : Ξ→ Ξ by

M(x, µ) = (TD1(x)(x), µD1(x)).
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Magnification dynamics

Iterating M , we see that

Mk(x, µ) = (TDk(x)(x), µDk(x)), (x, µ) ∈ Ξ.

• Let (x, µ) ∈ Ξ and N ∈ N. The N th scenery distribution of µ at x
is

1

N

N−1∑
k=0

δMk(x,µ) ∈ P(Ξ).

• A micromeasure distribution of µ at x is an accumulation point of
the scenery distributions in P(Ξ) w.r.t. the weak topology.
• The measure component of a micromeasure distribution is supported

on the micromeasures of µ at x (i.e. accumulation points of the
‘minimeasures’ µDk(x), as k →∞)
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Magnification dynamics

Let Q̃ be the measure component of an M invariant measure Q.

• Q is a CP distribution, if the choice of (x, µ) according to Q can be
made by first choosing µ according to Q̃ and then x according to µ.
I.e. we have a disintegration

ˆ
f(x, µ) dQ(x, µ) =

ˆˆ
f(x, µ) dµ(x) dQ̃(µ),

for any continuous f : Ξ→ R.
• A CP distribution Q is (M -)ergodic if the Q measure of any M

invariant set is either 0 or 1. I.e. A = M−1A =⇒ Q(A) ∈ {0, 1}.
• It is also possible to use more general (regular) filtrations than dyadic.

Then the dynamics is described by a Markov process (a CP chain)
and the CP distribution is the stationary measure for this chain.
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Generating CP distributions

A CP distribution Q is generated by a measure µ, if
(1) Q is the only micromeasure distribution of µ at µ almost every x;
(2) and at µ almost every x the q-sparse scenery distributions

1

N

N−1∑
k=0

δMqk(x,µ) ∈ P(Ξ)

converge to some distribution Qq for any q ∈ N, where each Qq may
be different from Q.

Condition (2) seems strange at first sight, but is essential to carry
geometric information from the micromeasure back to µ.

In ‘nice’ situations, (2) does not cause any problems in the proofs and
often Qq = Q for all q ∈ N.
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Example: CP chains in the conformal setting

When one zooms in on a set or measure with a self-conformal structure,
roughly speaking, one expects the tangent objects to be the same as the
original object.

Proposition (Hochman-Shmerkin 2012)

Let µ be a self-similar measure in Rd satisfying the strong separation
condition. Then µ generates an ergodic CP chain Q for the dyadic
partition operator supported on the dyadic micromeasures of µ such that
the dyadic micromeasures ν are of the form

ν = µ(B)−1S(µ|B)

for some Borel-set B with µ(B) > 0 and some similitude S of Rd.
Moreover, the original measure can be recovered from a given micromeasure
ν as µ = ν(B′)−1S′(ν|′B), for some Borel-set B′ and similitude S′.
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Example: dimensions of projections

• Let Πd,k be the set of all orthogonal projections Rd → Rk, k < d.

• For a CP distribution Q, write

E(π) =

ˆ
dimπν dQ̃(ν), π ∈ Πd,k.

i.e. the expected Hausdorff dimension of the projection πν over
micromeasures ν.

Theorem (Hochman-Shmerkin 2012)

Suppose µ generates an ergodic CP distribution Q. Then
(1) The map E : Πd,k → R is lower semicontinuous.
(2) dimπµ ≥ E(π) for any π ∈ Πd,k.
(3) E(π) = min{k, dimµ} for a.e. π ∈ Πd,k.
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Example: a projection theorem for self-similar sets

Theorem (Hochman-Shmerkin 2012)

Let µ be a self-similar measure in Rd satisfying the SSC and such that the
IFS satisfies the minimality assumption. Then, for all π ∈ Πd,k,

dimπµ = min{k,dimµ}.



Non-conformality I

Fix integers m < n and define Tm,n : [0, 1]2 → [0, 1]2 by

Tm,n(x, y) = (Tm(x), Tn(x)),

where Tm : [0, 1]→ [0, 1] is given by

Tm(x) = mx mod 1.

It is often more convenient from a dynamical point of view to think of [0, 1]
as the unit circle T and [0, 1]2 as the 2-torus T2.
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as the unit circle T and [0, 1]2 as the 2-torus T2.
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Non-conformality II: Tm,n invariant sets

A non-empty compact set K ⊆ [0, 1]2 is called a Bedford-McMullen
carpet, if K =

⋃
i,j Si,j(K), where each Si,j is of the form

Si,j =

(
1/m 0

0 1/n

)
+

(
i
j

)
,

for some indices 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1. Bedford-McMullen
carpets are important examples of Tm,n invariant sets, i.e., K = T−1m,n(K).
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Non-conformality II: Tm,n invariant measures

For a Bedford-McMullen IFS, associate to each Si,j a weight pi,j ∈ (0, 1)
such that

∑
pi,j = 1. Then the measure defined by

µ =
∑
i,j

pi,j µ ◦ S−1i,j

is a self-affine Bernoulli measure, and unsurprisingly, is Tm,n invariant.

Bernoulli measures on Bedford-McMullen carpets are good examples to
work with as they display many of the interesting features of Tm,n invariant
measures, whilst being very explicit and neat to write down.
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Non-conformality III: Magnification

• It was proved by Käenmäki and Bandt (2011) that under mild
assumptions the ‘tangent sets’ of Bedford-McMullen carpets (wrt.
Hausdorff distance) are of the form

[0, 1]× C,

where C is some random Cantor set depending on the point you
‘zoom in’ at.
• This product form of the tangents was exploited by Mackay (2011)

and F (2013) when computing the Assouad dimension of
Bedford-McMullen carpets.
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Non-conformality III: Magnification

Theorem (Ferguson, F, Sahlsten, 2013)

Any Tm,n Bernoulli measure µ generates an ergodic CP distribution Q.

• Measure component Q̃ is the distribution of the random measure

St(π1µ× µx),

where x ∼ π1µ and µx ∈ P([0, 1]) is the conditional measure of µ
with respect to the fibre π−11 {x} and St is the unique affine map
which sends [0, 1]2 to [0, 1/nt/2]× [0, nt/2] and t ∈ [0, 1) is drawn
according to Lebesgue in the ‘irrational case’ and according to a
uniform measure on a periodic orbit in the ‘rational case’.
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Application I: Projections

Furstenberg’s Conjecture (from the 1960s)

If X,Y ⊂ [0, 1] are closed and T2 and T3 invariant respectively. Then

dimπ(X × Y ) = min{1,dim(X × Y )}, π ∈ Π2,1 \ {π1, π2}.

Solved:

Theorem (Hochman-Shmerkin 2012)

If µ, ν ∈ P([0, 1]) are Tm and Tn invariant respectively and logm
logn ∈ R \Q,

then

dimπ∗(µ× ν) = min{1,dim(µ× ν)}, π ∈ Π2,1 \ {π1, π2}.

Obtained by constructing an ergodic CP distribution for µ× ν.
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Application I: Projections

Conjecture

Suppose µ is a Tm,n invariant measure and logm
logn ∈ R \Q, then

dimπ∗µ = min{1, dimµ}, π ∈ Π2,1 \ {π1, π2}.

Theorem (Ferguson-Jordan-Shmerkin 2010)

Suppose K is a Bedford-McMullen carpet with logm
logn ∈ R \Q. Then

dimπ(K) = min{1,dimK}, π ∈ Π2,1 \ {π1, π2}.

Theorem (Ferguson, F, Sahlsten, 2013)

The conjecture above holds for Tm,n invariant Bernoulli measures.
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Recall...

Theorem (Hochman-Shmerkin 2012)

Suppose µ generates an ergodic CP distribution Q. Then
(1) The map E : Πd,k → R is lower semicontinuous.
(2) dimπµ ≥ E(π) for any π ∈ Πd,k.
(3) E(π) = min{k, dimµ} for a.e. π ∈ Πd,k.

• In our setting, after suitable reparametrisation of Π2,1, the map E is
invariant under the irrational logm

logn rotation of the circle, so E is
constant as a lower semicontinuous function on Π2,1 \ {π1, π2}.
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Application II: Distance sets

The distance set of K ⊂ Rd is

D(K) = {|x− y| : x, y ∈ K}.

Distance set conjecture (Falconer, 1980s)

Suppose K ⊂ Rd is Borel and dimK ≥ d/2. Then dimD(K) = 1.
Moreover, if dimK > d/2, then L1(D(K)) > 0.

Many people have been involved in the study of this conjecture.
• Bourgain (2003) found a small constant ε > 0 with

dimD(K) ≥ 1

2
+ ε

whenever K ⊂ R2 with dimK ≥ 1.
• Erdogan (2006) proved dimK > d/2 + 1/3 in Rd yields positive

measure for D(K).
• Orponen (2011) proved dimD(K) = 1 if K is a planar self-similar set

with H1(K) > 0.
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Application II: Distance sets

Theorem (Ferguson, F, Sahlsten, 2013)

If µ on R2 generates an ergodic CP distribution and H1(sptµ) > 0, then

dimD(sptµ) ≥ min{1,dimµ}.

Corollary (Ferguson, F, Sahlsten, 2013)

If K is a Bedford-McMullen carpet with dimK ≥ 1, then dimD(K) = 1.

• Using standard dimension approximation theorems via
Bedford-McMullen carpets, this yields results for other
Lalley-Gatzouras and Barański type self-affine carpets as well.
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Possible further topics

• Scaling scenery of more general Tm,n invariant measures
(Gibbs measures with strong mixing properties?)
• Scaling scenery of general self-affine/other non-conformal sets
• Conformal Hausdorff dimension of self-affine carpets
• Applications of scaling scenery to other problems in geometric

measure theory
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Thank you!
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