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Self-similar sets

Let X = [0, 1]d , d ∈ N.

A map S : X → X is called a contracting similarity if there exists a constant
c ∈ (0, 1), such that

|S(x)− S(y)|= c |x − y |

for all x , y ∈ X .

For an iterated function system consisting of a finite number of contracting
similarities {Si}i∈I , it is well-known that there exists a unique non-empty
compact set satisfying

F =
⋃
i∈I

Si (F ).

Such sets are called self-similar sets.
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The similarity dimension

For such an IFS, let ci ∈ (0, 1) be the contraction ratio of Si .

There is a unique s > 0 satisfying ∑
i∈I

csi = 1.

This number depends on the IFS, not on the attractor.

Define
dimsim{Si}i∈I = min{d , s}.

It turns out that if F is the attractor of {Si}i∈I , then

dimH F 6 dimsim{Si}i∈I .
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The open set condition

If one can find an open set O ⊂ X such that

Si (O) ⊂ O for all i ∈ I

Si (O) ∩ Sj(O) = ∅ for all i 6= j ∈ I

then we say the open set condition is satisfied for this IFS.

This separation makes the geometry of the IFS and its attractor F much simpler.
Indeed, if the OSC is satisfied, then

dimH F = dimsim{Si}i∈I .
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A big question

Notice that the OSC depends on the IFS, not a priori on F .

It is possible, that the OSC fails for a specific IFS, but is satisfied for a different
IFS with the same attractor.

We are interested in the dimension of F , not the ‘dimension of the IFS’, so...

dim∗sim F := inf

{
dimsim{Si}i∈I :

{Si}i∈I is an IFS of similarities generating F

}
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Some big open questions

Folklore?

Is it always true that dimH F = dim∗sim F ?

Peres-Solomyak 1998

Is it true that

dimH F < dimsim{Si}i∈I ⇒ Semi〈Si : i ∈ I〉 is not free?
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Hochman’s Theorem

We say that {Si}i∈I has super-exponential concentration of cylinders if
− log ∆k/k →∞, where

∆k = min
i 6=j∈Ik

|Si (0)− Sj(0)|.

Hochman 2012

If {Si}i∈I does not have super-exponential concentration of cylinders, then

dimH F = dimsim{Si}i∈I

Hochman 2012

If the defining parameters for {Si}i∈I are algebraic, then

dimH F < dimsim{Si}i∈I ⇒ Semi〈Si : i ∈ I〉 is not free.
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The Assouad dimension

The Assouad dimension was introduced by Assouad in the 1970s

Important tool in the study of quasi-conformal mappings, embeddability
problems and PDEs

In fact the initial motivation was to prove the following theorem: a metric
space can be quasisymmetrically embedded into some Euclidean space if and
only if it has finite Assouad dimension.

Robinson: Dimensions, Embeddings, and Attractors
Heinonen: Lectures on Analysis on Metric Spaces.
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The Assouad dimension

Minimal attention in the literature on fractals,

until recently...

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets
2011 - Olsen: Assouad dimension of graph-directed Moran fractals
2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney covers and
tubular neighbourhoods
2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar sets and
self-similar sets with overlaps

The Assouad dimension gives ‘coarse but local’ information about a set,
unlike the Hausdorff dimension which gives ‘fine but global’ information.
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The Assouad dimension

The Assouad dimension of a non-empty subset F of X is defined by

dimA F = inf

{
α : there exists constants C , ρ > 0 such that,

for all 0 < r < R 6 ρ, we have

sup
x∈F

Nr

(
B(x ,R) ∩ F

)
6 C

(
R

r

)α
}
.
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Relationships between dimensions

For F ⊆ X , we have

dimP F

6 6

dimH F dimBF 6 dimA F .
6 6

dimBF
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Ahlfors regular sets

Recall that a compact set F is called Ahlfors regular if for all x ∈ F

HdimH F
(
B(x , r)

)
� rdimH F

for sufficiently small r .

For Ahflors regular sets F all the standard notions of dimension coincide, in
particular,

dimH F = dimA F .
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Basic properties

Property dimH dimP dimB dimB dimA

Monotone X X X X X
Finitely stable X X × X X
Countably stable X X × × ×
Lipschitz stable X X X X ×
Bi-Lipschitz stable X X X X X
Stable under taking closures × × X X X
Open set property X X X X X
Measurable X × X X X
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Back to self-similar sets

It is well-known that any self-similar set (regardless of overlaps) satisfies:

dimH F = dimBF = dimBF = dimP F 6 dimsim{Si}i∈I

It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular,
so if a self-similar set satisfies the OSC, then

dimH F = dimBF = dimBF = dimP F = dimA F = dimsim{Si}i∈I .

Olsen (’12) asked if the Assouad dimension of a self-similar set with overlaps can
ever exceed the upper box dimension.

Jonathan M. Fraser Assouad dimension and overlaps



Back to self-similar sets

It is well-known that any self-similar set (regardless of overlaps) satisfies:

dimH F = dimBF = dimBF = dimP F 6 dimsim{Si}i∈I

It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular,

so if a self-similar set satisfies the OSC, then

dimH F = dimBF = dimBF = dimP F = dimA F = dimsim{Si}i∈I .

Olsen (’12) asked if the Assouad dimension of a self-similar set with overlaps can
ever exceed the upper box dimension.

Jonathan M. Fraser Assouad dimension and overlaps



Back to self-similar sets

It is well-known that any self-similar set (regardless of overlaps) satisfies:

dimH F = dimBF = dimBF = dimP F 6 dimsim{Si}i∈I

It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular,
so if a self-similar set satisfies the OSC, then

dimH F = dimBF = dimBF = dimP F = dimA F = dimsim{Si}i∈I .

Olsen (’12) asked if the Assouad dimension of a self-similar set with overlaps can
ever exceed the upper box dimension.

Jonathan M. Fraser Assouad dimension and overlaps



Back to self-similar sets

It is well-known that any self-similar set (regardless of overlaps) satisfies:

dimH F = dimBF = dimBF = dimP F 6 dimsim{Si}i∈I

It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular,
so if a self-similar set satisfies the OSC, then

dimH F = dimBF = dimBF = dimP F = dimA F = dimsim{Si}i∈I .

Olsen (’12) asked if the Assouad dimension of a self-similar set with overlaps can
ever exceed the upper box dimension.

Jonathan M. Fraser Assouad dimension and overlaps



Self-similar sets with overlaps

Answer:

Yes!

I will now attempt to prove this by constructing an example.

This example is from my PhD thesis. Similar examples, not exactly in the context
of Assouad dimension, were known before by András Máthé and Tuomas
Orponen.
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Proof

Let α, β, γ ∈ (0, 1) be such that (log β)/(logα) /∈ Q and define similarity maps
S1,S2,S3 on [0, 1] as follows

S1(x) = αx , S2(x) = βx and S3(x) = γx + (1− γ).

Let F be the self-similar attractor of {S1,S2,S3}. We will now prove that
dimA F = 1 and, in particular, the Assouad dimension is independent of α, β, γ
provided they are chosen with the above property. We will use the following
proposition due to Mackay and Tyson.

Proposition

Let X ⊂ R be compact and let F be a compact subset of X . Let Tk be a
sequence of similarity maps defined on R and suppose that Tk(F ) ∩ X →dH F̂ for
some non-empty compact set F̂ . Then dimA F̂ 6 dimA F . The set F̂ is called a
weak tangent to F .
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Proof

We will now show that [0, 1] is a weak tangent to F in the above sense. Let
X = [0, 1] and assume without loss of generality that α < β. For each k ∈ N let
Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k, . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].
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Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad dimension and overlaps



Proof

We will now show that [0, 1] is a weak tangent to F in the above sense. Let
X = [0, 1] and assume without loss of generality that α < β. For each k ∈ N let
Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k , . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad dimension and overlaps



Proof

We will now show that [0, 1] is a weak tangent to F in the above sense. Let
X = [0, 1] and assume without loss of generality that α < β. For each k ∈ N let
Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k , . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad dimension and overlaps



Proof

To see why {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1] = [0, 1] we apply Dirichlet’s Theorem
in the following way.

It suffices to show that

{m logα + n log β : m ∈ N, n ∈ Z}

is dense in (−∞, 0). We have

m logα + n log β = (n logα)

(
m

n
+

log β

logα

)
and Dirichlet’s Theorem gives that there exists infinitely many n such that∣∣∣m

n
+

log β

logα

∣∣∣ < 1/n2

for some m. Since log β/ logα is irrational, we may choose m, n to make

0 < |m logα + n log β| < |logα|
n

with n arbitrarily large. We can thus make m logα + n log β arbitrarily small and
this gives the result.
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Proof

If we choose α, β, γ such that dimsim{Si}i∈I < 1, then

dimH F 6 dimsim{Si}i∈I < 1 = dimA F .
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The weak separation property

• Introduced by Zerner 1996 and Lau-Ngai 1999.

Define

E =

{
S−1i ◦ Sj : i 6= j ∈ I∗

}
An IFS satisfies the weak separation property if

Id /∈ E \ {Id}

Theorem (Zerner 1996)

If F is the self-similar attractor of an IFS satisfying the WSP, then

dimH F = dim∗sim F .
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Different separation conditions

WSP ⇔ Id /∈ E \ {Id}

OSC ⇔ Id /∈ E

freeness ⇔ Id /∈ E
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Our main result

Theorem (F., Henderson, Olsen, Robinson 2014)

Let F be a self-similar subset of R.

• If the WSP is satisfied, then F is Ahlfors regular and so

dimA F = dimH F = dim∗sim F .

• If the WSP is not satisfied, then

dimA F = 1.
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Higher dimensions?

What could the analogous result be for self-similar sets in Rd?

Conjecture (??)

Let F be a self-similar subset of Rd , not contained in any hyperplane.

• If the WSP is satisfied, then F is Ahlfors regular and so

dimA F = dimH F = dim∗sim F .

• If the WSP is not satisfied, then

dimA F = d .
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Higher dimensions?

What could the analogous result be for self-similar sets in Rd?

Conjecture (??)

Let F be a self-similar subset of Rd , not contained in any hyperplane.

• If the WSP is satisfied, then F is Ahlfors regular and so

dimA F = dimH F = dim∗sim F . TRUE !

• If the WSP is not satisfied, then

dimA F = d . FALSE !
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What we can prove

Theorem (F., Henderson, Olsen, Robinson 2014)

Let F be a self-similar subset of Rd , not contained in any hyperplane.

• If the WSP is satisfied, then F is Ahlfors regular and so

dimA F = dimH F = dim∗sim F .

• If the WSP is not satisfied, then

dimA F > 1.
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An example

dimH F 6 dimsim{Si}i∈I =
log 4

log 5
< 1 = dimA π1F

6 dimA F 6 dimA π1F × π2F 6 dimA π1F + dimA π2F

= 1 +
log 2

log 5
< 2
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Future work

• Sufficient conditions for
dimA F > k

for self-similar F in Rd and k 6 d?

• Exploring ‘maximal v something’ dichotomies for Assouad dimension in other
settings.
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Thank you!
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