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Let i be a compactly supported Borel probability measure on R"” with
support denoted by F = supp .

The L9-spectrum of i is defined by

tog [, w(B0x,8) " du(x)
530 —logé

T#(q) =
with g € R.
This spectrum gives a quantitative analysis of the global fluctuations of .

The motivation to study this spectrum has roots in information theory.
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Why do people interested in fractals study the

L9-spectrum?

Relationship to the dimension theory of F and ...
dimg F = 7(0)
If 7 is differentiable at g = 1, then
dimpg p = dimp p = dime pp = —7/(1) (Ngai '97)

and therefore
—7'(1) < dimg F < dimp F < 7(0).
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Why do people interested in fractals study the

L9-spectrum?
Relationship to the multifractal structure of u ...

Let
={x € F : dimpc u(x) = a}

for a > 0, where d|m|0C u( ) is the local dimension of p at x, if it exists.

The Hausdorff and packing multifractal spectra are defined by
fH,#(a) = dImH Aa

and
fp“u,(Oé) = dimp Aa

for o > 0.

For all o > 0, we have

fru(a) < fpu(a) < 75(a) (for example, Olsen '95, '98)
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An example

Let i be a self-similar measure
p=> pipoSt
i

satisfying the strong separation condition, with defining probabilities
pi € (0,1) and similarity mappings S; with contraction ratios equal to ¢;
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An example

Let i be a self-similar measure
p=> pipoSt
i

satisfying the strong separation condition, with defining probabilities
pi € (0,1) and similarity mappings S; with contraction ratios equal to ¢;

The L9%spectra of p is given by the unique function 5 : R — R defined by
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Self-affine carpets

="

Bedford-McMullen Gatzouras-Lalley

",

Baranski Feng-Wang

3
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Feng and Wang's result

Theorem (Feng-Wang '05)

Let g > 0. For a self-affine measure on a Feng-Wang carpet

7,(q) = max{0a, 0}
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Feng and Wang's result

Theorem (Feng-Wang '05)

Let g > 0. For a self-affine measure on a Feng-Wang carpet

7,(q) = max{0a, 0}

where
t- (Iogt + Ty () (g)(logd — log €) — g log p)
0a = sup
tela t |Ogd
and
t- (Iogt + Ty () (g)(log € — log d) — g log p)
0 = sup
telp t-logc
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Feng and Wang's result

Theorem (Feng-Wang '05)

Let g > 0. For a self-affine measure on a Feng-Wang carpet where
c; > d; for all i,

qu T""l ;L) I ( ) Try(p (q) 1

In this case we have a closed form expression for the spectrum.

This allows precise analysis of differentiability properties and gives
applications concerning the Hausdorff dimension of p and F.

In fact, the spectrum is differentiable for all g € (0, c0).
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Our class of measures

For g > 0, let

71(q) = Ty (1) (9)
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If there are orientation reversing maps in the IFS, then these are a pair of
graph-directed self-similar measures, and they may have complicated
overlaps.
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Our class of measures

For g > 0, let

71(q) = Try () (9)
and

TQ(q) = 7—Trz(u)(q)'

If there are orientation reversing maps in the IFS, then these are a pair of
graph-directed self-similar measures, and they may have complicated
overlaps.

Theorem (F '13, Peres-Solomyak '00)

The L9-spectrum exists for g > 0 for any graph-directed self-similar
measure, regardless of separation conditions.
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g-modified singular value functions

For i € ZF let 7i(q) be the L9-spectrum of the projection of y onto the
longest side of the rectangle Si([O, 1]2),
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g-modified singular value functions

For i € ZF let 7i(q) be the L9-spectrum of the projection of y onto the
longest side of the rectangle Si([O, 1]2), and note that this is always equal

to either 71(q) or m2(q).

Fors€e R and g > 0 and i € Z%, we define the g-modified singular value
function, ¥>9, by

0o9() = ()7 axfi)),
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g-modified singular value functions

For i € ZF let 7i(q) be the L9-spectrum of the projection of y onto the
longest side of the rectangle Si([O, 1]2), and note that this is always equal
to either 71(q) or m2(q).

Fors€e R and g > 0 and i € Z%, we define the g-modified singular value
function, ¥>9, by

ws,q(i) = piq al(i)Ti(CI) 042(i)577—i(q)7

and for s € R and k € N, we define a number W;'7 by

W= w9

i€k
We may define a function P : R x [0,00) — [0, 00) by:

P(s.q) (W)

= lim
k— o0
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A formula for the L9-spectrum

For each g > 0, there is a unique value s € R for which P(s,q) =1
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Unfortunately, the definition for v(q) is not a closed form expression.
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A formula for the L9-spectrum

For each g > 0, there is a unique value s € R for which P(s,q) =1 and
hence we may define a function v : [0,00) — R by

P(v(q),q) =1

Unfortunately, the definition for v(q) is not a closed form expression.

However, v(q) can be numerically estimated by approximating it by
functions ~yy defined by

\Uzk(q)yq _ Zp i 7i(q) an(i )w(q) ni(a) — 1.
ieZk
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A formula for the L9-spectrum

Lemma (Properties of v)

(1) ~y is strictly decreasing on [0, c0)

(2) ~ is continuous on (0, co)
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A formula for the L9-spectrum

Lemma (Properties of v)

1
2

~y is strictly decreasing on [0, c0)

~y is continuous on (0, c0)

4

(1)
(2)
(3) v is the pointwise limit of v, as k — oo
(4) (1) =0 and limg_,c 7(q) = —

(5)

5) « is convex on (0, c0)
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A formula for the L9-spectrum

Theorem (F '13)

Let p be in our class of measures. Then
(1) For all g € ]0,1] we have
(2) Forall g > 1 we have

(3) If p satisfies the rectangular open set condition, then for all ¢ > 0
we have

7.(q) = 7(q).
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A closed form expression in the orientation preserving case

The main drawback of our formula is that it is not a closed form
expression and this prevents us analysing differentiability of the spectrum.
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The main drawback of our formula is that it is not a closed form
expression and this prevents us analysing differentiability of the spectrum.
However, thankfully we can use our result to get a closed form expression
in the orientation preserving case (which includes the Feng-Wang class).

Assume p is ‘orientation preserving’, which means that the linear part of
each map S; in the defining IFS is of the form

:|:C,' 0
0 =d

for constants ¢;, d; € (0, 1), which are the singular values of S;.
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A closed form expression in the orientation preserving case

The main drawback of our formula is that it is not a closed form
expression and this prevents us analysing differentiability of the spectrum.
However, thankfully we can use our result to get a closed form expression
in the orientation preserving case (which includes the Feng-Wang class).

Assume p is ‘orientation preserving’, which means that the linear part of
each map S; in the defining IFS is of the form

:|:C,' 0
0 =d

for constants c¢;, d; € (0, 1), which are the singular values of S;. Define
Ya,v8 : [0,00) = R by

Zplg C[ﬁ(‘?) di’YA(q)*Tl(Q) =1
i€T

and
Zplq lez ’YB —72(q) - 1.

i€
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A closed form expression in the orientation preserving case

Since y4 and g are given by closed form expressions, it is easy to study
their differentiability.
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A closed form expression in the orientation preserving case

Since y4 and g are given by closed form expressions, it is easy to study
their differentiability.

Lemma
If 7y is differentiable at q > 0, then 4 is differentiable at q, with

Sier pf ¢ a7 D jog (PiC,-T{(q)di_T{(q))
a 3. Ipq (@) gral@)=i(a) log d;
IS 1 i i

1

and if T, is differentiable at q > 0, then ~yg is differentiable at q with a
similar explicit formula.
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A closed form expression in the orientation preserving case

Theorem (F '13)

(1) I max{ya(q),78(q)} < 71(q) + 72(q), then
7(q) = max{va(q),78(q)}-

(2) Ifmin{va(q),78(q)} = 71(q) + 72(q), then

7(q) < min{ya(q),v8(q)}
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A closed form expression in the orientation preserving case

Theorem (F '13)

(1) If max{va(q),78(q)} < 11(q) + 72(q), then

7(q) = max{va(q),v8(q)}-

(2) Ifmin{va(q),78(q)} = 71(q) + 72(q), then

7(q) < min{ya(q),v8(q)}

with equality occurring if either of the following conditions are
satisfied:

(2.1) Siez pf M9 a7 D hog (ci/dj) > 0,
(2.2) Yies b lez(q) ’YB(CI) 2(q) log (di/ci) >0
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A closed form expression in the orientation preserving case

Theorem (F '13)

(1) If max{va(q),78(q)} < 11(q) + 72(q), then

7(q) = max{va(q),v8(q)}-

(2) Ifmin{va(q),78(q)} = 71(q) + 72(q), then

7(q) < min{ya(q),v8(q)}

with equality occurring if either of the following conditions are
satisfied:

(2.1) Siez pf M9 a7 D hog (ci/dj) > 0,
(2.2) Yies b lez(q) ’YB(CI) 2(q) log (di/ci) >0

Moreover, if ¢; > d; for all i € Z, then v(q) = va(q) for all ¢ > 0, and if
di > ¢ forall i € Z, then v(q) = v&(q) for a// g > 0, without any
additional assumptions.
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A closed form expression in the orientation preserving case

Theorem (F '13)

Let i be of separated type and assume that m1 and 1, are differentiable
at g = 1. Then ~ is differentiable at q = 1 with

min{ya(1),75(1)}  if min{y,(1),75(1)} = 71(1) + 75(1)

max{73(1),75(1)}  if max{yu(1),7p(1)} <71(1) + 75(1)

Y1) =
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A closed form expression in the orientation preserving case

Theorem (F '13)

Let i be of separated type and assume that m1 and 1, are differentiable
at g = 1. Then ~ is differentiable at q = 1 with

) min{y4(1),75(1)}  if min{y3(1),75(1)} = 71(1) + 75(1)
")/ =
max{yu(1),75(1)}  if max{y(1),75(1)} < (1) + 73(1)

Corollary (F '13)
Let p1 be of separated type and assume it satisfies the ROSC. Then

dimp F = dimp F = max{y4(0),75(0)}
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Let p1 be of separated type and assume it satisfies the ROSC. Then
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A closed form expression in the orientation preserving case

Theorem (F '13)

Let i be of separated type and assume that m1 and 1, are differentiable
at g = 1. Then ~ is differentiable at q = 1 with

min{ya(1),75(1)}  if min{y,(1),75(1)} = 71(1) + 75(1)

Y1) =
max{y4(1),75(1)} if max{y4(1), v(1)} < 71(1) + 75(1)

Corollary (F '13)
Let p1 be of separated type and assume it satisfies the ROSC. Then
dimp F = dimp F = max{va(0),75(0)} (See also Barariski ‘07 and F '12)

If 1 and T, are differentiable at q = 1, then

dimp p = dimp p = dime pu = —7'(1)
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A closed form expression in the orientation preserving case

Theorem (F '13)

Let i be of separated type and assume that m1 and 1, are differentiable
at g = 1. Then ~ is differentiable at q = 1 with

) min{y4(1),75(1)}  if min{y3(1),75(1)} = 71(1) + 75(1)
")/ =
max{yu(1),75(1)}  if max{y(1),75(1)} < (1) + 73(1)

Corollary (F '13)
Let p1 be of separated type and assume it satisfies the ROSC. Then
dimp F = dimp F = max{va(0),75(0)} (See also Barariski ‘07 and F '12)
If 1 and T, are differentiable at q = 1, then
dimyp = dimpp = dimepu = —~/(1)

which is equal to either —v,(1) or —vg(1).



A closed form expression in the orientation preserving case

If ¢; > d;forallieT,
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A closed form expression in the orientation preserving case
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A closed form expression in the orientation preserving case

If ¢; > d; for all i € Z, then
dimB F= dimp F= ’YA(O)
and if 7y is differentiable at ¢ = 1, then

Yiez pi(log pi 4 {(1) log(c;/d;))
> icz pilogd

dimy p = dimp g = dimep = —4(1) = —
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A closed form expression in the orientation preserving case

If ¢; > d; for all i € Z, then
dimB F= dimp F= ’YA(O)
and if 7y is differentiable at ¢ = 1, then

Yiez pi(log pi 4 {(1) log(c;/d;))
> icz pilogd

dimy p = dimp g = dimep = —4(1) = —

There is a similar formula if ¢; < d; for all i € T.
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An example
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An example
.| s

The probability vector is (3/5,1/5,1/5) and the unit square has been
divided up into columns of widths 1/4,1/2 and 1/4 and rows of heights

1/2,3/10 and 2/10.
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An example

We have a closed form expression for + for all g € [0, c0)
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An example

We have a closed form expression for + for all g € [0, c0)

It turns out that v has a phase transition at a point gy =~ 0.237, where it
is not differentiable, but for all other values of g > 0 it is differentiable.
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An example

We have a closed form expression for + for all g € [0, c0)

It turns out that v has a phase transition at a point gy =~ 0.237, where it
is not differentiable, but for all other values of g > 0 it is differentiable.

v(q) = ~v8(q) for q € [0, qo]

7(q) = va(q) for q € [qo, >0).
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An example

N
N i
\ 0.76
\\
2
N 0.760.
1 A
s
N
0.733
1 0
14
0.750
| 0.7454
0.230 0335 0340 0.245 0350
q

Figure : Left: The graph of v (black), the graphs of the parts of 4 and
~g not equal to v (grey), and the graph of (71 + 72) (dashed), which is
included to indicate which of v4, v5 is equal to 7, i.e., the one ‘nearer’

to (11 + 7).
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An example

We also have closed form expressions for the dimensions.
dimg F = dimp F = ~(0) = v5(0) = 1.046105401
and

dimgpu = dimpp = dimepp = —/(1) = —4(1) = 0.9792504246.
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Further questions

Question

In the separated case, if min{va(q),vs8(q)} = m1(q) + m2(q) and neither
(2.1) nor (2.2) is satisfied, is it still true that

v(q) = min{ya(q),78(q)}?
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Further questions

Question

In the separated case, if min{va(q),vs8(q)} = m1(q) + m2(q) and neither
(2.1) nor (2.2) is satisfied, is it still true that

v(q) = min{ya(q),78(q)}?

Even in the awkward situations where we do not have equality, our result
still provides useful computational information as

m1(q) + 72(q) < w(q) < v(q) < min{ya(q),v8(q)}

for all k € N.
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Further questions

It would be interesting to consider negative values of q. The first
question concerns the projections.
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Further questions

It would be interesting to consider negative values of q. The first
question concerns the projections.

Question
Do the L9-spectra of (graph-directed) self-similar measures exist for all
qgeR?
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Further questions

It would be interesting to consider negative values of q. The first
question concerns the projections.

Question
Do the L9-spectra of (graph-directed) self-similar measures exist for all
qgeR?

If the answer is 'yes', then we can at least define a moment scaling
function as in the positive case.
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It would be interesting to consider negative values of q. The first
question concerns the projections.

Question

Do the L9-spectra of (graph-directed) self-similar measures exist for all
qgeR?

If the answer is 'yes', then we can at least define a moment scaling
function as in the positive case.

However, precise calculations for negative g are very awkward.
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Thank you!
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