
Inhomogeneous iterated function systems

Jonathan M. Fraser

The University of Warwick, UK

Fractal Geometry and Stochastics V

Jonathan M. Fraser Inhomogeneous IFSs



Iterated function systems

Let X be a compact metric space. An iterated function system (IFS)
on X is a finite collection {Si}i∈I of contracting self-maps on X . It is a
fundamental result in fractal geometry that there exists a unique
non-empty compact set F , called the attractor, which satisfies

F =
⋃
i∈I

Si (F ).

This can be proved by an elegant application of Banach’s contraction
mapping theorem.

Common examples include: self-similar sets, self-affine sets,
self-conformal sets, etc . . .
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Iterated function systems - examples
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Inhomogeneous iterated function systems

Natural generalisation introduced by Barnsley and Demko in 1985.

Consider a standard IFS, and fix a compact set C ⊆ X , called the
condensation set. Analogous to the homogeneous case, there is a
unique non-empty compact set, FC , satisfying

FC =
⋃
i∈I

Si (FC ) ∪ C

which we refer to as the inhomogeneous attractor (with condensation
C).

From now on we will write homogeneous attractors as F∅, i.e. as
inhomogeneous attractors with C = ∅.
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Inhomogeneous iterated function systems

These systems have interesting structure theorems with pleasant parallels
with solutions of inhomogeneous ODEs (Barnsley, Demko, Olsen,
Snigireva).

They also have various applications:

In practise: image compression (Barnsley et al.).

In theory: dimensions of self-similar sets and measures with complicated
overlaps (Testud, Olsen, Snigireva).
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Inhomogeneous iterated function systems - examples

Figure : A flock of birds from above
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Inhomogeneous iterated function systems - examples

Figure : A fractal forest
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Dimension theory of homogeneous attractors

Computing dimF∅ for different notions of ‘dim’ and different classes or
examples of IFS is a huge industry with a vast and fascinating literature.

However, it is actually extremely difficult and there are really only results
in a number of very special (albeit very interesting) cases.

Certain things can help: ‘separation’ and ‘conformality’, or, failing that,
‘randomness’.
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Dimension theory of inhomogeneous attractors

When considering the dimension ‘dim’ of FC , one expects the relationship

dimFC = max{dimF∅, dimC}

to hold.

Indeed, if ‘dim’ is countably stable, monotone and stable under
Lipschitz maps, then

max{dimF∅, dimC} 6 dimFC = dim

(
F∅ ∪ C ∪

⋃
i∈I∗

Si(C )

)

= max

{
dimF∅, dim

(
C ∪

⋃
i∈I∗

Si(C )

)}

= max{dimF∅, dimC}

and so the expected formula holds trivially.
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Box dimensions of inhomogeneous self-similar sets

The upper and lower box dimensions are not countably stable and so
establishing the relationships

dimBFC = max{dimBF∅, dimBC}

and
dimBFC = max{dimBF∅, dimBC}

can be awkward.

Although the initial philosophy was that we should still expect them to
hold.
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Box dimensions of inhomogeneous self-similar sets

Theorem (Olsen-Snigireva 2007)
If the ambient metric space is a subset of Rd , each of the Si are
similarities, and the sets S1(FC ), . . . ,SN(FC ) and C are pairwise disjoint,
then

dimBFC = max{dimBF∅, dimBC}.

Remark
The above result was obtained as a corollary to deeper result concerning
the Lq-dimensions of inhomogeneous self-similar measures.

Jonathan M. Fraser Inhomogeneous IFSs



Box dimensions of inhomogeneous self-similar sets

Theorem (Olsen-Snigireva 2007)
If the ambient metric space is a subset of Rd , each of the Si are
similarities, and the sets S1(FC ), . . . ,SN(FC ) and C are pairwise disjoint,
then

dimBFC = max{dimBF∅, dimBC}.

Remark
The above result was obtained as a corollary to deeper result concerning
the Lq-dimensions of inhomogeneous self-similar measures.

Jonathan M. Fraser Inhomogeneous IFSs



Box dimensions of inhomogeneous self-similar sets

Theorem (F. 2012)
Working in an arbitrary compact metric space, still assuming each of the
Si are similarities, but with no assumptions on separation conditions, we
have

max{dimBF∅, dimBC} 6 dimBFC 6 max{s, dimBC}

where s is the similarity dimension.
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Box dimensions of inhomogeneous self-similar sets

Corollary (F. 2012)
The expected relationship holds for upper box dimension if we make any
of the following additional assumptions:

(1) The SOSC is satisfied - this still allows for arbitrary overlaps
concerning C.

(2) The ambient metric space is a subset of Rd and the OSC is satisfied.

(3) The ambient metric space is a subset of R, the defining parameters
for the IFS are algebraic and the semigroup generated by the maps
is free.
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Box dimensions of inhomogeneous self-similar sets

Theorem (F. 2012)
The expected relationship can fail for lower box dimension.

We provide simple examples of this failure where the ambient space is
[0, 1]d and one can assume as strong separation conditions as one wishes.

We also provide (slightly unsightly) upper and lower bounds on dimBFC

which hold generally when the ambient metric space is Ahlfors regular
and some separation properties are assumed for the underlying IFS.
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Box dimensions of inhomogeneous self-similar sets

Corollary (F. 2012)
Even in the simplest setting, dimBFC cannot be given as a function of
the upper and lower box dimensions of F∅ and C.

The lower box dimension of inhomogeneous attractors is difficult to
study!
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Self-affine carpets

Self-affine carpets are a very restricted but very popular class of
self-affine set.

Introduced independently by Bedford and McMullen in the mid 1980s.

There is a huge literature studying the dimension theory of
Bedford-McMullen carpets and their various generalisations.

Often they produce interesting and diverse results, which are very
different from results in the self-similar setting.

Perhaps inhomogeneous versions of the Bedford-McMullen carpets will
provide interesting examples and different phenomena?
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Self-affine carpets
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Self-affine carpets

Figure : A self-affine Bedford-McMullen carpet with m = 4, n = 5. The
shaded rectangles on the left indicate the 6 maps in the IFS.
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Box dimensions of inhomogeneous self-affine carpets

Let π1 denote the orthogonal projections from the plane onto the first
coordinates and write

s1(F∅) = dimB π1(F∅)

and
s1(C ) = dimBπ1(C ).

Let N be the number of mappings in the IFS.
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Box dimensions of inhomogeneous self-affine carpets

Theorem (Bedford-McMullen 1985)

For a homogeneous Bedford-McMullen carpet F∅, we have

dimBF∅ = dimBF∅ =
logN

log n
+ s1(F∅)

(
1− logm

log n

)

Theorem (F 2013)

For an inhomogeneous Bedford-McMullen carpet FC , we have

dimBFC =
logN

log n
+ max{s1(F∅), s1(C )}

(
1− logm

log n

)
assuming a ‘regularity condition’ on C.
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Box dimensions of inhomogeneous self-affine carpets

• we also have non-trivial estimates on the lower box dimension
of FC .

• our results actually apply to much more general families of
carpet than Bedford-McMullen, for example Lalley-Gatzouras
and Barański.
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An example: fractal combs

The underlying homogeneous IFS will be a Bedford-McMullen
construction where m = 2 and n > 2 can vary.

The IFS is then made up of all the maps which correspond to the left
hand column.

The condensation set for this construction is the base of the unit square.

We call the inhomogeneous attractor a fractal comb and denote it by F n
C .
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Fractal combs

Figure : The inhomogeneous fractal combs F 8
C (left) and F 4

C (right).

Jonathan M. Fraser Inhomogeneous IFSs



Fractal combs

Our results imply that

dimBF
n
C = dimBF

n
C =

logN

log n
+ max{s1(F n

∅ ), s1(C )}
(

1− logm

log n

)
= 2− log 2/ log n > 1.

However,
max{dimBF∅, dimBC} = 1

Corollary (F. 2013)
In the case of inhomogeneous Bedford-McMullen carpets, dimBFC cannot
be given as a function of the upper and lower box dimensions of F∅ and
C. In particular, it depends on the IFS.
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What about this ‘regularity condition’?

Recall, our result relied on a ‘regularity condition’ on the condensation
set C .

For a long time I thought that this was not required, however,

Theorem (F 2013)
For any inhomogeneous Bedford-McMullen carpet FC

dimBFC >
logN

log n
+ max{s1(F∅), s1(C )}

(
1− logm

log n

)
but the inequality can be strict.
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Future work

Question
Does the ‘expected result’ hold for upper box dimension for every
inhomogeneous self-similar set, even if there is a dimension drop in the
homogeneous analogue?

Question
What is the upper box dimension of an inhomogeneous self-affine carpet
in general, i.e. without assuming the ‘regularity condition’ on C?

Question
What about more general self-affine constructions? Is there an
inhomogeneous version of Falconer’s Theorem?
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Thank you!
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