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Graphs and images

Let X be a compact metric space, n ∈ N and write

Cn(X ) =
{

f : X → Rn | f is continuous
}
.

This is a Banach space when equipped with the infinity norm, ‖ · ‖∞.

We interested in studying two objects related to a given f ∈ Cn(X ).

The
image:

f (X ) ⊂ Rn

and the graph:

Gf =
{

(x , f (x)) | x ∈ X
}
⊂ X × Rn.
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Generic dimension of graphs of continuous functions

Over the past 25 years several papers have investigated the question:

What is the ‘dimension’ of the graph or image for a ‘generic’ continuous
function?

Clearly, this question can mean different things depending on the

definition of the words ‘dimension’ and ‘generic’ !
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Dimension

There are, of course, several different notions of ‘dimension’ used to
study fractal sets. Some of the most widely used include Hausdorff
dimension, packing dimension and box-counting dimension. These are
related in the following way for an arbitrary totally bounded set K .

dimP K

6 6

dimH K dimBK
6 6

dimBK
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How should we define ‘generic’?

In mathematics one is often interested in making statements about a
‘generic’ member of some family. (Almost all real numbers are normal,
for example.) It is therefore important to develop a rigorous framework in
which a sensible definition of ‘generic’ can be given. We will focus on
two major approaches to this problem:

(1) Prevalence;

(2) Typicality.
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Prevalence: a measure theoretic approach

Definition
Let X be a completely metrizable topological vector space. A Borel set
F ⊆ X is prevalent if there exists a Borel measure µ on X and a compact
set K ⊆ X such that 0 < µ(K ) <∞ and

µ
(

X \ F + x
)

= 0

for all x ∈ X .

A non-Borel set F ⊆ X is prevalent if it contains a prevalent Borel set
and the complement of a prevalent set is called a shy set.
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Prevalence: an extension of ‘Lebesgue almost all’ to
infinite dimensional spaces

Prevalence was introduced by Hunt, Sauer and Yorke in 1992. The
importance of prevalence is that it extends the notion of ‘Lebesgue
almost all’ to infinite dimensional spaces where there is no Lebesgue
measure. It satisfies many of the natural properties one would want from
a definition of ‘generic’. For example:

(1) A superset of a prevalent set is prevalent;

(2) Prevalence is translation invariant;

(3) A countable intersection of prevalent sets is prevalent;

(4) In finite dimensional vector spaces prevalent sets are precisely the
sets with full Lebesgue measure.
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Typicality: a topological approach

Definition
Let X be a complete metric space. A set M is called meagre if it can be
written as a countable union of nowhere dense sets. A property is called
typical if the set of points which do not have the property is meagre.

Perhaps surprisingly, typicality often completely disagrees with the

measure theoretic approach to describing generic behaviour. For example,

a typical real number is not normal.
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Dimensions of typical graphs in C1([0, 1])

The question stated previously has been completely answered in the
‘typicality’ case.

Theorem (Mauldin and Williams ’86)
A typical function f ∈ C1([0, 1]) satisfies:

dimH Gf = 1.

Theorem (Humke and Petruska ’88)
A typical function f ∈ C1([0, 1]) satisfies:

dimP Gf = dimBGf = 2.

Theorem (Hyde, Laschos, Olsen, Petrykiewicz and Shaw ’10)
A typical function f ∈ C1([0, 1]) satisfies:

dimH Gf = dimBGf = 1.
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Extensions to C1(X ) in the typicality case

In fact, Hyde, Laschos, Olsen, Petrykiewicz and Shaw proved a much
more general result.

Theorem (Hyde, Laschos, Olsen, Petrykiewicz and Shaw ’10)
Let X be compact. Then for the typical f ∈ C1(X ) we have

dimBGf = dimBX

and
dimBGf = sup

g∈C1(X )

dimBGg .

The number supg∈C1(X ) dimBGg is called the graph upper box dimension

of X and can be difficult to compute explicitly.
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Dimensions of prevalent graphs in C1([0, 1])

In the ‘prevalence’ case the question has also been answered. In 1997 it
was shown by McClure that the packing dimension of a prevalent
continuous function is 2.

In 2010, it was shown by Shaw that the lower box dimension of the graph
of a prevalent continuous function is also 2. This result was also obtained
independently by Gruslys, Jonušas, Mijovic̀, Ng, Olsen and Petrykiewicz
and Falconer and F.

Finally, in 2011 it was shown by F and Hyde that the prevalent Hausdorff
dimension is also 2.

dimH Gf = dimBGf = dimP Gf = dimBGf = 2
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Extensions to C1(X ) in the prevalence case

In 2011, Bayart and Heurteaux generalised the result of F and Hyde to
the following theorem.

Theorem (Bayart and Heurteaux ’11)
Suppose that dimH X > 0. Then the set

{f ∈ C1(X ) | dimH Gf = dimH X + 1}

is a prevalent subset of C1(X ).

The key technique in the proof was to use fractional Brownian motion on

X and the assumption dimH X > 0 was required to guarantee the

existence of certain measures on X which could be lifted to the graphs

and used in the energy estimates. Interestingly, this left open the case

when dimH X = 0.
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Dimension of prevalent images in Cn(X )

Theorem (Dougherty ’94)
Let X be homeomorphic to the Cantor space. Then for the prevalent
f ∈ Cn(X ), the image f (X ) has non-empty interior.

In 2012, this result was applied by Balka, Farkas, F and Hyde to obtain
the following Corollary.

Corollary (Balka, Farkas, F and Hyde ’12)
Let X be uncountable. Then the set

{f ∈ Cn(X ) | dimH f (X ) = n}

is a prevalent subset of Cn(X ).

Jonathan M. Fraser Generic graphs and images



Dimension of prevalent images in Cn(X )

Theorem (Dougherty ’94)
Let X be homeomorphic to the Cantor space. Then for the prevalent
f ∈ Cn(X ), the image f (X ) has non-empty interior.

In 2012, this result was applied by Balka, Farkas, F and Hyde to obtain
the following Corollary.

Corollary (Balka, Farkas, F and Hyde ’12)
Let X be uncountable. Then the set

{f ∈ Cn(X ) | dimH f (X ) = n}

is a prevalent subset of Cn(X ).

Jonathan M. Fraser Generic graphs and images



Dimension of prevalent images in Cn(X )

This result has a surprising application. The image f (X ) is the projection
of the graph Gf onto Rn and hence, for all f ∈ Cn(X ),

dimH f (X ) 6 dimH Gf 6 dimH(X × Rn) 6 dimH X + n.

Now, if we suppose dimH X = 0, then we obtain

dimH f (X ) 6 dimH Gf 6 n

and so, for the prevalent f ∈ Cn(X ),

dimH Gf = n

which solves the open question left by Bayart and Heurteaux when we set
n = 1. Note that if X is countable, then the problem is trivial.
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Dimension of typical images in Cn(X )

There is a substantial amount of literature on the problem of computing
typical dimensions in a wide variety of contexts. A ‘rule of thumb’ is that
the typical Hausdorff dimension tends to be the smallest value it can be
and the typical packing dimension tends to be the largest value it can be.

For us the smallest value the dimension of f (X ) can be for f ∈ Cn(X ) is
0 - because of the constant maps!

and the largest the dimension of f (X ) can be for f ∈ Cn(X ) is n - this is
slightly less easy to see. In fact, every uncountable compact metric space
contains a Cantor set and every compact set is a continuous image of a
Cantor set. These two facts, combined with Tietze’s extension Theorem
do the job.

NB: the constant maps cannot form a residual set, so perhaps something

more exciting is happening for Hausdorff dimension?!
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Some simple cases

Clearly, working in the space C1([0, 1]), we have for the typical f

dimH f ([0, 1]) = dimP f ([0, 1]) = 1.

So Hausdorff dimension is not typically minimized! We also have that for
a typical f ∈ Cn([0, 1])

dimH f ([0, 1]) = 1 and dimP f ([0, 1]) = n.

The typical packing dimension is maximal as expected, but what is the

typical Hausdorff dimension of f (X ) for general X ?
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Topological dimension and an embedding theorem

Definition
The topological dimension of a topological space X is defined to be the
maximum value of n, such that there exists ε > 0 such that for all δ < ε
and all δ-covers of X , there exists a point x ∈ X which lies in at least
n + 1 of the covering sets.

We denote this number by dimT X and note that it is always an integer.

For any metric space, X , we have

dimT X 6 dimH X 6 dimP X
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Dimension of typical images in Cn(X )

Theorem (Balka, Farkas, F, Hyde ’12)
For a typical f ∈ Cn(X ) we have

dimH f (X ) = dimBf (X ) = min
{

dimT X , n
}

and
dimP f (X ) = dimBf (X ) = n.

The typical Hausdorff dimension is not minimal (or maximal) but yet it is

still an integer, even if the Hausdorff dimension of X is fractional!
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Further work

One might hope to generalise many of the results presented here. In
particular, in the graph setting, one could consider the space Cn(X ).

Also, one might try to map into a more general space that Rn, for

example, an arbitrary Banach space. Clearly there will be some

difficulties, but perhaps one can say something in some specific cases?
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Thank you!
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