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These objects are all examples of fractals.

But what is a fractal? What properties

did all of these objects share?

complexity?

self-similarity?

a “natural” look?

not described by ‘simple’ shapes (e.g. circles, lines, triangles)?

detail at a fine scale?
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Fractals appear all over science, mathematics, even art:

stock market fluctuations

the surface of a lung

horizons of mountain landscapes

distribution of stars in the galaxy
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Where do circles, lines and triangles appear in the real world?

actually, they don’t.
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Can we define the dimension of a fractal?

What does “dimension” mean?
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Consider this proposal...

Given a very small length scale r > 0, count how many

small squares of sidelength r are required to ‘cover’ the object in question.

Call this ‘covering number’ N(r).

N(r) should increase as r decreases... but how?

For a line N(r) ≈ r−1

For a square N(r) ≈ r−2

For a cube N(r) ≈ r−3

So, perhaps N(r) ≈ r−dimension in general?
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Roughly how many small squares of sidelength r > 0 to we need to cover the

fractal Sierpiński triangle?
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Roughly how many small squares of sidelength r > 0 to we need to cover the

fractal Sierpiński triangle?

When r = 2−k it was “easy” to estimate... and the answer was 3k ≈ 21.58k.

So the covering number is roughly r−1.58.

Or, if you know logarithms, then r− log2(3).

The dimension of the Sierpiński triangle is log2(3) ≈ 1.5849625 . . .
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Thank you for listening!

Figure: ‘Circle Limit III’ by M.C. Escher
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