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Fractals

Roughly speaking, fractals are geometric objections with some of the following
properties:

(1) they exhibit detail on arbitrarily small scales

(2) they display some sort of ‘self-similarity’

(3) classical techniques in (smooth) geometry are not sufficient to describe them

(4) they often have a simple definition

Fractal geometry is the study of fractals and is mainly concerned with examining

their geometrical properties in a rigorous framework.
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Dynamics

What is dynamical system?

(I guess you know)
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Dynamics

A dynamical system is a set X ,

and a map T : X → X .

What might we want to know about a dynamical system?

(1) what happens to orbits T k(x) as k →∞? for a ‘typical’ x?

(2) does there exist a set E ⊂ X on which the dynamics are ‘special’ or
‘different’ ?

(3) how complicated is the map T? and the set X?

(4) Is the system ‘mixing’? How fast does it ‘mix’?
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An example

Let X = [0, 1] and let T (x) = 3x mod 1.
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An example

What does this map do to points in [0, 1]?

Here is one interpretation: write

x = 0.d1d2d3d4 . . .

as a base 3 expansion. Then

T (x) = 0.d2d3d4d5 . . .

i.e. T acts like the left shift on the trinary expansion of x .
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An example

Maybe we are interested in points which do not have the digit 1 in their trinary
expansion?
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An example problem

One is often interested in understanding the local structure of a fractal.

Let µ be
the uniform probability measure on the Cantor set.

For x in the Cantor set and small r > 0, we have

µ(B(x , r)) ≈ µ(B(x , 3−k)) = 2−k = (3−k)log 2/ log 3 ≈ r log 2/ log 3

which means log 2/ log 3 is the ‘dimension’ of µ (and the Cantor set).

Do we expect the ‘density’

lim
r→0

µ(B(x , r))

r s

to exist for every x?
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An example problem

Perhaps surprisingly, the answer is ‘no’.

Despite how regular the Cantor set
seems, at almost every x the density does not exist.

Do we expect the ‘upper density’

D(x) = lim sup
r→0

µ(B(x , r))

r s

to be the same for every x?

This time the answer is ‘almost surely yes’, and this is an easy consequence of the
underlying dynamics.
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An example problem

Fact 1: µ is T -ergodic.

(T−1(E ) = E ⇒ µ(E ) = 0 or 1)

Fact 2: D is a µ-measurable function of x .

Fact 3: for any x , D(x) = D(T (x)).

Consequently: for any λ

T−1 {x : D(x) < λ} = {x : D(T (x)) < λ} = {x : D(x) < λ}

and so either D(x) < λ almost surely or D(x) > λ almost surely.
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Another example

Let X = C and T (z) = z2 + c for some fixed c ∈ C.

(1) how complicated is the dynamics of T?

(2) which points z escape to infinity?

For c = 0
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Another example

In general the story is much more complicated:

Most points are in the basin of attraction of some fixed point.

However, there is a set J(T ) where the dynamics is interesting, which is called
the Julia set of T .

J(T ) = ∂{z ∈ C : T k(z) 9∞}

The Mandelbrot set (which we’ve seen already) is

M = {c ∈ C : J(T ) is connected}.
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The Mandelbrot set
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Some Julia sets
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Julia sets

Basic properties of the Julia set J

(1) compact

, uncountable, perfect, nowhere dense

(2) invariant: T (J) = T−1(J) = J

(3) J is the closure of the repelling periodic points of T

(4) J is the boundary of the basin of attraction of any attractive fixed point

(5) T acts ‘chaotically’ on J
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Other examples

Kleinian groups are discrete subgroups of PSL(2,C) which act discretely on the
interior of 3 dimensional hyperbolic space.

Despite this their action on the
boundary (modeled by the complex plane) can be continuous on a highly intricate
fractal set, known as the limit set.

Iterated function systems are collections of contracting maps on a metric
space. They uniquely define non-empty compact fractal attractors which can be
modelled by shift spaces similar to the Cantor set.
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