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Fourier analysis and Hausdorff dimension

Let K ⊂ R2 be Borel and P(K) be the set of all Borel probability
measures on K.

dimHK = sup
{
s ≤ 2 : ∃µ ∈ P(K), Is(µ) :=

ˆˆ
dµ(x)dµ(y)

|x− y|s
<∞

}
• The Fourier transform of µ ∈ P(K) is µ̂ : R2 → C

µ̂(ξ) :=

ˆ
R2

e−2πix·ξ dµ(x) ξ ∈ R2

• Alternative formula for the s-energy:

Is(µ) = c

ˆ
R2

|µ̂(ξ)|2 |ξ|s−2 dξ

...so if for ε > 0 we have

|µ̂(ξ)| . |ξ|−(s+ε)/2, ξ ∈ R2 =⇒ Is(µ) <∞ =⇒ dimHK ≥ s.
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This motivates...

Definition (Fourier dimension)
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Definition (Round sets)

If dimFK = dimHK, we say that K is round.
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Finding round sets

Unit circle S1 is round...

...since Ĥ1xS1 decays like |ξ|−1/2.
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Finding round sets II

A line L ⊂ R2 is not round...

...since µ̂ ≡ 1 on L⊥ for any µ ∈ P(L)!

=⇒ dimF L = 0 < 1 = dimH L.

• Punchline: dimH measures size, but dimF also contains information
on curvature.

’Non-trivial’ round sets are hard to construct deterministically, but
• there are some examples by Kahane and Kaufman; in particular some

sets arising from Diophantine approximation are round.
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Finding round sets III

There are many random round sets.

First such constructions are due to
Salem, but the following key result is by Kahane.

Theorem (Kahane 1986)

Let ω : [0,∞)→ R be 1-dimensional Brownian motion, and let K ⊂ [0,∞)
be compact. Then the image ω(K) ⊂ R is a.s. round, with

dimF ω(K) = dimH ω(K) = min{1, 2 dimHK}.

Analogous result also holds for fractional Brownian motion.
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Finding round sets IV

So, the image of any compact set under a ’random function’ is round.

• Maybe random functions provide more examples of round sets?
Kahane writes (1993):

“...proving almost sure roundedness for specific random sets is
never easy and it remains an open program for most natural
random sets: level sets and graphs of random functions in
particular.”

Later (2006), Shieh and Xiao explicitly ask:

“Are the graph and level sets of a stochastic process such as
fractional Brownian motion Salem sets?”
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Finding round sets V

The conjecture is partially confirmed for level sets:

Theorem (Fouché and Mukeru 2013)

Let ω : [0,∞)→ R be 1-dimensional fractional Brownian motion.
Then for a ∈ R, the level set

Lω(a) = {0 ≤ t ≤ 1 : ω(t) = a}

is round with positive probability and

dimF Lω(a) = dimH Lω(a) =
1

2
.



Graphs of Brownian motion

How about graphs of 1-dimensional (fractional) Brownian motion?

The Hausdorff dimension part is classical:

Theorem (Taylor 1953, Adler 1977)

Let ω : [0,∞)→ R be the 1-dimensional fractional Brownian motion with
Hurst exponent 0 < H < 1. Then, the graph

Gω := {(t, ω(t)) : t ∈ [0,∞)} ⊂ R2

a.s. satisfies
dimHGω = 2−H.

• In particular, dimHGω > 1 a.s.
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Fourier dimension of graphs

We proved:

Theorem (J. F., T. Orponen and T. Sahlsten. 2013)

Let E ⊂ R be a set, and let f : E → R be a function. Then

dimFGf ≤ 1.

Combining this with Taylor’s and Adler’s results answers Kahane’s, Shieh’s
and Xiao’s questions on random graphs in the negative:

Corollary

The Brownian graphs Gω are a.s. not round/Salem.
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Proof

Some theorems in geometric measure theory can be strengthened if
hypotheses on Hausdorff dimension are replaced by those on Fourier
dimension.
• Marstrand’s projection theorem: if a planar set K has Fourier

dimension s ∈ [0, 1], then all projections of K onto lines have Fourier
dimension ≥ s (folklore).
• Falconer’s distance set conjecture: if a planar set K has Fourier

dimension s > 1, then the distance set of K, namely

∆(K) = {|x− y| : x, y ∈ K},

has positive length (P. Mattila).
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Proof II

For us, the key is proving a Fourier analytic version of Marstrand’s slicing
theorem.
• Marstrand’s slicing theorem: if a planar set K has dimFK > 1,

then in every direction there are Leb positively many lines ` with

dimH[K ∩ `] > 0.

In particular, the above conclusion holds for lines in the vertical direction.
• Graphs of arbitrary functions f clearly do not have this property:

Hence, they can have Fourier dimension at most one!
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Proof III

• To do: inspect the proof of Marstrand’s slicing theorem.

• The enemy: classical proofs do not use Fourier analysis (i.e. relation
with Fourier transforms and dimension is not clear).
• The solution: invent a Fourier analytic proof for Marstrand’s slicing

theorem.
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Proof IV

Proof sketch:
• Assume that K ⊂ R2 is a set with dimFK > 1.

• Choose µ ∈ P(K) with |µ̂(ξ)| . |ξ|−(s+ε)/2 for some s > 1.
• Slice the measure µ with vertical lines Lt = {(t, y) : y ∈ R} ⊂ R2

to obtain ’sliced measures’ µt, supported on K ∩ Lt.

Easy but important: µt 6= 0 for Leb positively many t.
(this requires the decay assumption of µ̂ and Plancherel’s formula)
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Proof V
• Consider the (s− 1)-energies

Is−1(µt) =

ˆˆ
dµt(x) dµt(y)

|x− y|s−1
...

• ...and prove the inequalityˆ
R
Is−1(µt) dt .

ˆ
R2

|µ̂(ξ)|2|ξ2|s−2 dξ...

• ...which follows from Plancherel if µ is a smooth function; the general
case involves a tedious approximation.
• In fact, this inequality was proved by Orponen (2012).
• Plug in the estimate |µ̂(ξ)|2 . |ξ|−(s+ε) and check that the integral on

the R.H.S is finite.
=⇒ Is−1(µt) <∞ for Leb a.e. t ∈ R.

=⇒ dimH[K ∩ Lt] ≥ s− 1 > 0 for Leb pos. many t.

Q.E.D.
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=⇒ dimH[K ∩ Lt] ≥ s− 1 > 0 for Leb pos. many t.

Q.E.D.



Open questions

• What is the a.s. Fourier dimension of the Brownian graphs Gω?
We only proved that dimFGω ≤ 1.

• Is Fourier dimension countably (or even finitely) stable? I.e.

dimF

( ⋃
i∈N

Ai

)
= sup

i
dimFAi?
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Further results

Not being able to solve the first open question, we considered the following
variant:

Question

What is the Fourier dimension of the graph of a typical function
f ∈ C[0, 1]?

• Here we mean typical in the sense of Baire category.



Further results II

We proved:

Theorem (J. F., T. Orponen and T. Sahlsten. 2013)

The typical function f ∈ C[0, 1] has the following property. If µ ∈ P(Gf ),
then

lim sup
|ξ|→∞

|µ̂(ξ)| ≥ 1

5
.

In particular, dimFGf = 0.

• The constant 1/5 is not sharp (optimal constant unknown).
• Hausdorff dimension dimHGf ≥ 1 for any f ∈ C[0, 1], so our result

implies that the graph of a typical function is not round/Salem!
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