Assouad dimension of distance sets

Assouad dimension

I am interested in dimension theory of fractal sets $F \subseteq \mathbb{R}^{d}$.

Assouad dimension

I am interested in dimension theory of fractal sets $F \subseteq \mathbb{R}^{d}$. Assouad dimension is one notion of dimension:

$$
\begin{aligned}
& \operatorname{dim}_{\mathrm{A}} F=\inf \{s>0: \quad \text { there exists } C>0 \text { such that, } \\
& \qquad \begin{array}{ll}
\left.\sup _{0<r<R} \sup _{x \in F} N_{r}(B(x, R) \cap F) \leq C\left(\frac{R}{r}\right)^{s}\right\}
\end{array}
\end{aligned}
$$

Assouad dimension

I am interested in dimension theory of fractal sets $F \subseteq \mathbb{R}^{d}$. Assouad dimension is one notion of dimension:

$$
\begin{aligned}
& \operatorname{dim}_{\mathrm{A}} F=\inf \{s>0 \quad: \quad \text { there exists } C>0 \text { such that, } \\
& \qquad \begin{array}{ll}
\left.\sup _{0<r<R} \sup _{x \in F} N_{r}(B(x, R) \cap F) \leq C\left(\frac{R}{r}\right)^{s}\right\}
\end{array}
\end{aligned}
$$

Here $N_{r}(E)$ is the minimum number of balls of radius r required to cover a set E.

Dimension theory

Dimension theory

Assouad dimension of distance sets

Dimension theory

Assouad dimension

Assouad dimension has applications in numerous areas, including embedding theory, functional analysis, and geometric group theory.

Assouad dimension

Assouad dimension has applications in numerous areas, including embedding theory, functional analysis, and geometric group theory. It is growing in popularity as a notion in fractal geometry alongside, e.g. Hausdorff and box dimension.

Assouad dimension

Assouad dimension has applications in numerous areas, including embedding theory, functional analysis, and geometric group theory. It is growing in popularity as a notion in fractal geometry alongside, e.g. Hausdorff and box dimension.

For this talk, it is useful to note that (for closed F)

$$
\operatorname{dim}_{\mathrm{A}} F=\max \left\{\operatorname{dim}_{\mathrm{H}} E: E \in \operatorname{Micro}(F)\right\} .
$$

Assouad dimension

Assouad dimension has applications in numerous areas, including embedding theory, functional analysis, and geometric group theory. It is growing in popularity as a notion in fractal geometry alongside, e.g. Hausdorff and box dimension.

For this talk, it is useful to note that (for closed F)

$$
\operatorname{dim}_{\mathrm{A}} F=\max \left\{\operatorname{dim}_{\mathrm{H}} E: E \in \operatorname{Micro}(F)\right\} .
$$

This is non-trivial and was proved by Käenmäki-Ojala-Rossi, together with ideas going back to Furstenberg and Mackay-Tyson.

Assouad dimension

Assouad dimension has applications in numerous areas, including embedding theory, functional analysis, and geometric group theory. It is growing in popularity as a notion in fractal geometry alongside, e.g. Hausdorff and box dimension.

For this talk, it is useful to note that (for closed F)

$$
\operatorname{dim}_{\mathrm{A}} F=\max \left\{\operatorname{dim}_{\mathrm{H}} E: E \in \operatorname{Micro}(F)\right\} .
$$

This is non-trivial and was proved by Käenmäki-Ojala-Rossi, together with ideas going back to Furstenberg and Mackay-Tyson. Also, note

$$
\operatorname{dim}_{H} F \leq \operatorname{dim}_{P} F \leq \overline{\operatorname{dim}}_{B} F \leq \operatorname{dim}_{A} F
$$

Assouad dimension

ASSOUAD DIMENSION

 AND FRACTAL GEOMETRYJONATHAN M. FRASER

CAMBRIDGE UNIVERSITY PRESS

The distance set problem

The distance set problem is a notorious open problem in geometric measure theory.

The distance set problem

The distance set problem is a notorious open problem in geometric measure theory. It concerns the relationship between the size of a set $F \subset \mathbb{R}^{d}$ and the size of the associated distance set

$$
D(F)=\{|x-y|: x, y \in F\}
$$

The distance set problem

The distance set problem is a notorious open problem in geometric measure theory. It concerns the relationship between the size of a set $F \subset \mathbb{R}^{d}$ and the size of the associated distance set

$$
D(F)=\{|x-y|: x, y \in F\} .
$$

When F is finite, this leads to the Erdös distinct distances problem (solved by Guth-Katz in 2015).

The distance set problem

The distance set problem is a notorious open problem in geometric measure theory. It concerns the relationship between the size of a set $F \subset \mathbb{R}^{d}$ and the size of the associated distance set

$$
D(F)=\{|x-y|: x, y \in F\} .
$$

When F is finite, this leads to the Erdös distinct distances problem (solved by Guth-Katz in 2015). For infinite sets, one version of the problem asks if it is true that for Borel sets F in the plane,

$$
\operatorname{dim}_{H} F \geq 1 \Rightarrow \operatorname{dim}_{H} D(F)=1 .
$$

The distance set problem

The distance set problem is a notorious open problem in geometric measure theory. It concerns the relationship between the size of a set $F \subset \mathbb{R}^{d}$ and the size of the associated distance set

$$
D(F)=\{|x-y|: x, y \in F\} .
$$

When F is finite, this leads to the Erdös distinct distances problem (solved by Guth-Katz in 2015). For infinite sets, one version of the problem asks if it is true that for Borel sets F in the plane,

$$
\operatorname{dim}_{H} F \geq 1 \Rightarrow \operatorname{dim}_{H} D(F)=1 .
$$

This is open, but there has been a lot of progress recently due to Orponen, Shmerkin, Shmerkin-Keleti, Guth-losevich-Ou-Wang and others.

The distance set problem

The distance set problem is a notorious open problem in geometric measure theory. It concerns the relationship between the size of a set $F \subset \mathbb{R}^{d}$ and the size of the associated distance set

$$
D(F)=\{|x-y|: x, y \in F\} .
$$

When F is finite, this leads to the Erdös distinct distances problem (solved by Guth-Katz in 2015). For infinite sets, one version of the problem asks if it is true that for Borel sets F in the plane,

$$
\operatorname{dim}_{H} F \geq 1 \Rightarrow \operatorname{dim}_{H} D(F)=1 .
$$

This is open, but there has been a lot of progress recently due to Orponen, Shmerkin, Shmerkin-Keleti, Guth-losevich-Ou-Wang and others. For example, we know (GIOW 2019)

$$
\operatorname{dim}_{H} F>5 / 4 \Rightarrow \operatorname{dim}_{H} D(F)=1 .
$$

The distance set problem

One may pose this problem for different notions of dimension and also search for optimal estimates in the sub-critical case when $\operatorname{dim} F<1$. The problem is open for box dimension, packing dimension etc.

The distance set problem

One may pose this problem for different notions of dimension and also search for optimal estimates in the sub-critical case when $\operatorname{dim} F<1$. The problem is open for box dimension, packing dimension etc.

Theorem (F 2020)

For an arbitrary set $F \subseteq \mathbb{R}^{2}$

$$
\operatorname{dim}_{A} D(F) \geq \min \left\{\operatorname{dim}_{A} F, 1\right\}
$$

and this is sharp.

The distance set problem

We can get partial progress towards this theorem quite cheaply (by leaning on impressive result of others).

The distance set problem

We can get partial progress towards this theorem quite cheaply (by leaning on impressive result of others).

It is not hard to show that if $E \in \operatorname{Micro}(F)$, then

$$
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) .
$$

Therefore, if $\operatorname{dim}_{\mathrm{A}} F>5 / 4$, then $\operatorname{dim}_{\mathrm{A}} D(F)=1$.

The distance set problem

We can get partial progress towards this theorem quite cheaply (by leaning on impressive result of others).

It is not hard to show that if $E \in \operatorname{Micro}(F)$, then

$$
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) .
$$

Therefore, if $\operatorname{dim}_{\mathrm{A}} F>5 / 4$, then $\operatorname{dim}_{\mathrm{A}} D(F)=1$.

Shmerkin (2019) proved that for Borel F

$$
\operatorname{dim}_{H} F=\operatorname{dim}_{P} F>1 \Rightarrow \operatorname{dim}_{H} D(F)=1 .
$$

The distance set problem

We can get partial progress towards this theorem quite cheaply (by leaning on impressive result of others).

It is not hard to show that if $E \in \operatorname{Micro}(F)$, then

$$
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) .
$$

Therefore, if $\operatorname{dim}_{\mathrm{A}} F>5 / 4$, then $\operatorname{dim}_{\mathrm{A}} D(F)=1$.
Shmerkin (2019) proved that for Borel F

$$
\operatorname{dim}_{H} F=\operatorname{dim}_{P} F>1 \Rightarrow \operatorname{dim}_{H} D(F)=1 .
$$

Therefore, by letting $E \in \operatorname{Micro}(F)$ with $\operatorname{dim}_{\mathrm{H}} E=\operatorname{dim}_{\mathrm{A}} F$,

$$
\operatorname{dim}_{\mathrm{A}} F>1 \Rightarrow \operatorname{dim}_{\mathrm{A}} D(F)=1 .
$$

The distance set problem

We can get partial progress towards this theorem quite cheaply (by leaning on impressive result of others).

It is not hard to show that if $E \in \operatorname{Micro}(F)$, then

$$
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) .
$$

Therefore, if $\operatorname{dim}_{\mathrm{A}} F>5 / 4$, then $\operatorname{dim}_{\mathrm{A}} D(F)=1$.
Shmerkin (2019) proved that for Borel F

$$
\operatorname{dim}_{H} F=\operatorname{dim}_{P} F>1 \Rightarrow \operatorname{dim}_{H} D(F)=1 .
$$

Therefore, by letting $E \in \operatorname{Micro}(F)$ with $\operatorname{dim}_{\mathrm{H}} E=\operatorname{dim}_{\mathrm{A}} F$,

$$
\operatorname{dim}_{\mathrm{A}} F>1 \Rightarrow \operatorname{dim}_{\mathrm{A}} D(F)=1
$$

The case $\operatorname{dim}_{\mathrm{A}} F \leq 1$ is not (so far) susceptible to such reductions.

The distance set problem

Sketch proof: For $V \in G(2,1)$ write Π_{V} for orthogonal projection onto V. For $z \in \mathbb{R}^{2}$, write π_{z} for the associated radial projection and D_{z} for the pinned distance map.

The distance set problem

Sketch proof: For $V \in G(2,1)$ write Π_{V} for orthogonal projection onto V. For $z \in \mathbb{R}^{2}$, write π_{z} for the associated radial projection and D_{z} for the pinned distance map.

Suppose F is closed and let $E \in \operatorname{Micro}(F)$ with $\operatorname{dim}_{\mathrm{H}} E=\operatorname{dim}_{\mathrm{A}} F$. Let $E^{\prime} \in \operatorname{Micro}(E)$ with $\operatorname{dim}_{\mathrm{H}} E^{\prime}=\operatorname{dim}_{\mathrm{A}} E=\operatorname{dim}_{\mathrm{A}} F$ with 'focal point' $z \in E$.

The distance set problem

Sketch proof: For $V \in G(2,1)$ write Π_{V} for orthogonal projection onto V. For $z \in \mathbb{R}^{2}$, write π_{z} for the associated radial projection and D_{z} for the pinned distance map.

Suppose F is closed and let $E \in \operatorname{Micro}(F)$ with $\operatorname{dim}_{\mathrm{H}} E=\operatorname{dim}_{\mathrm{A}} F$. Let $E^{\prime} \in \operatorname{Micro}(E)$ with $\operatorname{dim}_{\mathrm{H}} E^{\prime}=\operatorname{dim}_{\mathrm{A}} E=\operatorname{dim}_{\mathrm{A}} F$ with 'focal point' $z \in E$.

Let $\mathcal{E} \subseteq G(2,1)$ be the set of exceptions to Orponen's projection theorem for Assouad dimension applied to the set E^{\prime}. That is $\mathcal{E} \subseteq G(2,1)$ are those V for which $\operatorname{dim}_{A} \pi_{V} E^{\prime}<\min \left\{\operatorname{dim}_{A} E^{\prime}, 1\right\}$. Orponen's theorem (2021) states that $\operatorname{dim}_{H} \mathcal{E}=0$.

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{Z}(E)>0$.

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{Z}(E)>0$. Then there must exist $x \in E$ such that $\operatorname{span}(z-x) \notin \mathcal{E}$.

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{z}(E)>0$. Then there must exist $x \in E$ such that $\operatorname{span}(z-x) \notin \mathcal{E}$. Apply a nonlinear projection theorem for Assouad dimension (F 2020) to deduce that $\Pi_{\text {span }(z-x)}\left(E^{\prime}\right)$ is a microset of $D_{z}(E)$.

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{Z}(E)>0$. Then there must exist $x \in E$ such that $\operatorname{span}(z-x) \notin \mathcal{E}$. Apply a nonlinear projection theorem for Assouad dimension (F 2020) to deduce that $\Pi_{\text {span }(z-x)}\left(E^{\prime}\right)$ is a microset of $D_{z}(E)$. Then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) \geq \operatorname{dim}_{\mathrm{A}} D_{z}(E) & \geq \operatorname{dim}_{\mathrm{A}} \Pi_{\text {span }(z-x)}\left(E^{\prime}\right) \\
& \geq \min \left\{\operatorname{dim}_{\mathrm{A}} E^{\prime}, 1\right\} \\
& =\min \left\{\operatorname{dim}_{\mathrm{A}} F, 1\right\} .
\end{aligned}
$$

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{Z}(E)>0$. Then there must exist $x \in E$ such that $\operatorname{span}(z-x) \notin \mathcal{E}$. Apply a nonlinear projection theorem for Assouad dimension (F 2020) to deduce that $\Pi_{\text {span }(z-x)}\left(E^{\prime}\right)$ is a microset of $D_{z}(E)$. Then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) \geq \operatorname{dim}_{\mathrm{A}} D_{z}(E) & \geq \operatorname{dim}_{\mathrm{A}} \Pi_{\text {span }(z-x)}\left(E^{\prime}\right) \\
& \geq \min \left\{\operatorname{dim}_{\mathrm{A}} E^{\prime}, 1\right\} \\
& =\min \left\{\operatorname{dim}_{\mathrm{A}} F, 1\right\} .
\end{aligned}
$$

Case 2: Suppose $\operatorname{dim}_{\mathrm{H}} \pi_{\boldsymbol{z}}(E)=0$.

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{Z}(E)>0$. Then there must exist $x \in E$ such that $\operatorname{span}(z-x) \notin \mathcal{E}$. Apply a nonlinear projection theorem for Assouad dimension (F 2020) to deduce that $\Pi_{\text {span }(z-x)}\left(E^{\prime}\right)$ is a microset of $D_{z}(E)$. Then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) \geq \operatorname{dim}_{\mathrm{A}} D_{z}(E) & \geq \operatorname{dim}_{\mathrm{A}} \Pi_{\text {span }(z-x)}\left(E^{\prime}\right) \\
& \geq \min \left\{\operatorname{dim}_{\mathrm{A}} E^{\prime}, 1\right\} \\
& =\min \left\{\operatorname{dim}_{\mathrm{A}} F, 1\right\} .
\end{aligned}
$$

Case 2: Suppose $\operatorname{dim}_{H} \pi_{z}(E)=0$. Then $E \subseteq \pi_{z}(E) \otimes_{z} D_{z}(E)$

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{Z}(E)>0$. Then there must exist $x \in E$ such that $\operatorname{span}(z-x) \notin \mathcal{E}$. Apply a nonlinear projection theorem for Assouad dimension (F 2020) to deduce that $\Pi_{\text {span }(z-x)}\left(E^{\prime}\right)$ is a microset of $D_{z}(E)$. Then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) \geq \operatorname{dim}_{\mathrm{A}} D_{z}(E) & \geq \operatorname{dim}_{\mathrm{A}} \Pi_{\text {span }(z-x)}\left(E^{\prime}\right) \\
& \geq \min \left\{\operatorname{dim}_{\mathrm{A}} E^{\prime}, 1\right\} \\
& =\min \left\{\operatorname{dim}_{\mathrm{A}} F, 1\right\} .
\end{aligned}
$$

Case 2: Suppose $\operatorname{dim}_{H} \pi_{z}(E)=0$. Then $E \subseteq \pi_{z}(E) \otimes_{z} D_{z}(E)$ and

$$
\operatorname{dim}_{H} E \leq \operatorname{dim}_{H} \pi_{z}(E)+\operatorname{dim}_{B} D_{Z}(E) \leq \operatorname{dim}_{A} D_{z}(E)
$$

The distance set problem

Case 1: Suppose $\operatorname{dim}_{H} \pi_{Z}(E)>0$. Then there must exist $x \in E$ such that $\operatorname{span}(z-x) \notin \mathcal{E}$. Apply a nonlinear projection theorem for Assouad dimension (F 2020) to deduce that $\Pi_{\text {span }(z-x)}\left(E^{\prime}\right)$ is a microset of $D_{z}(E)$. Then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) \geq \operatorname{dim}_{\mathrm{A}} D_{z}(E) & \geq \operatorname{dim}_{\mathrm{A}} \Pi_{\text {span }(z-x)}\left(E^{\prime}\right) \\
& \geq \min \left\{\operatorname{dim}_{\mathrm{A}} E^{\prime}, 1\right\} \\
& =\min \left\{\operatorname{dim}_{\mathrm{A}} F, 1\right\} .
\end{aligned}
$$

Case 2: Suppose $\operatorname{dim}_{H} \pi_{z}(E)=0$. Then $E \subseteq \pi_{z}(E) \otimes_{z} D_{z}(E)$ and

$$
\operatorname{dim}_{H} E \leq \operatorname{dim}_{H} \pi_{z}(E)+\operatorname{dim}_{B} D_{Z}(E) \leq \operatorname{dim}_{A} D_{z}(E)
$$

and therefore

$$
\operatorname{dim}_{\mathrm{A}} D(F) \geq \operatorname{dim}_{\mathrm{A}} D(E) \geq \operatorname{dim}_{\mathrm{A}} D_{\mathrm{z}}(E) \geq \operatorname{dim}_{\mathrm{H}} E=\operatorname{dim}_{\mathrm{A}} F .
$$

Assouad dimension of distance sets

