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Distance sets

Given a set E ⊂ Rd , the distance set of E is the set of all distances
realised by pairs of points in E .

D(E ) = {|x − y | : x , y ∈ E}.

It is interesting to compare the ‘sizes’ of E and D(E ):

Question: Suppose E has cardinality n, what is the minimum possible
cardinality of D(E )?
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Distance sets

Let g(n) = min{|D(E )| : |E | = n}.

Theorem (Erdös 1946)

For sets E in the plane√
n − 3/4− 1/2 6 g(n) 6 cn/

√
log n
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Distance sets

The upper bound follows from the following simple example:

• Let E ⊂ Z2 be a
√
n ×
√
n square grid.

• Every distance realised by E is the square root of a number bounded
above by 2n which is the sum of two squares.

• But the Landau-Ramanujan Theorem says that the number of positive
integers less than x that are the sum of two squares is bounded by a
constant times x/

√
log x .

• So |D(E )| is bounded above by a constant times n/
√

log n
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Distance sets

Landau and Ramanujan
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Distance sets

In 1946 Erdös conjectured that this upper bound (n1−o(1)) was sharp.

This problem received a lot of attention over the years and the lower
bound was gradually improved:

• 1946 Erdös: n1/2 (1/2 ≈ 0.500)

• 1952 Moser: n2/3 (2/3 ≈ 0.667)

• 1984 Fan Chung: n5/7 (5/7 ≈ 0.714)

• 1993 Székely: n4/5 (4/5 ≈ 0.800)

• 2001 Solymosi-Tóth: n6/7 (6/7 ≈ 0.857)

• 2003 Tardos: n0.863636... (0.863636 · · · ≈ 0.864)

• 2004 Katz-Tardos: n0.864137... (0.864137 · · · ≈ 0.864)

• 2013 Guth-Katz: n/ log(n)
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Distance sets

Larry Guth and Netz Hawk Katz
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Distance sets

...but this talk is not about finite sets.

In 1985 Kenneth Falconer considered the same problem, but for E
uncountable and ‘size’ interpreted as Hausdorff dimension.

Theorem (Falconer 1985)

For sets E ⊆ Rd , if dimH E ≥ d/2 + 1/2, then dimHD(E ) = 1.
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Distance sets

There are several related conjectures on this problem.

Here is one

Conjecture

For sets E ⊆ Rd , if dimH E ≥ d/2, then dimHD(E ) = 1.

• 1985 Falconer: dimH E ≥ d/2 + 1/2⇒ dimHD(E ) = 1

• 1999 Wolff: dimH E ≥ d/2 + 1/3⇒ dimHD(E ) = 1 (for d = 2)

• 2006 Erdogan: dimH E ≥ d/2 + 1/3⇒ dimHD(E ) = 1 (for d = d)

• 2003 Bourgain: there exists a constant c > 1/2, such that for planar E

dimH E > 1⇒ dimHD(E ) > c
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Distance sets

There are also results which so far only apply to special classes of set.

Theorem (Orponen 2012)

Let E ⊆ R2 be a self-similar set with positive length. Then
dimHD(E ) = 1.

• NOTE: “positive length” has recently been relaxed to “dimension at
least 1” by Barany.
• Orponen’s proof was split into two cases:

1) ‘Dense rotations’: recent pioneering work of Hochman and Shmerkin on
fractal projection theorems gives the desired result.

2) ‘Discrete rotations’: This case can be reduced to the ‘no rotations
case’, and from there a delicate geometric argument yields the result.

Jonathan Fraser The distance set problem



Distance sets

There are also results which so far only apply to special classes of set.

Theorem (Orponen 2012)

Let E ⊆ R2 be a self-similar set with positive length. Then
dimHD(E ) = 1.

• NOTE: “positive length” has recently been relaxed to “dimension at
least 1” by Barany.
• Orponen’s proof was split into two cases:

1) ‘Dense rotations’: recent pioneering work of Hochman and Shmerkin on
fractal projection theorems gives the desired result.

2) ‘Discrete rotations’: This case can be reduced to the ‘no rotations
case’, and from there a delicate geometric argument yields the result.

Jonathan Fraser The distance set problem



Distance sets

There are also results which so far only apply to special classes of set.

Theorem (Orponen 2012)

Let E ⊆ R2 be a self-similar set with positive length. Then
dimHD(E ) = 1.

• NOTE: “positive length” has recently been relaxed to “dimension at
least 1” by Barany.

• Orponen’s proof was split into two cases:

1) ‘Dense rotations’: recent pioneering work of Hochman and Shmerkin on
fractal projection theorems gives the desired result.

2) ‘Discrete rotations’: This case can be reduced to the ‘no rotations
case’, and from there a delicate geometric argument yields the result.

Jonathan Fraser The distance set problem



Distance sets

There are also results which so far only apply to special classes of set.

Theorem (Orponen 2012)

Let E ⊆ R2 be a self-similar set with positive length. Then
dimHD(E ) = 1.

• NOTE: “positive length” has recently been relaxed to “dimension at
least 1” by Barany.
• Orponen’s proof was split into two cases:

1) ‘Dense rotations’: recent pioneering work of Hochman and Shmerkin on
fractal projection theorems gives the desired result.

2) ‘Discrete rotations’: This case can be reduced to the ‘no rotations
case’, and from there a delicate geometric argument yields the result.

Jonathan Fraser The distance set problem



Distance sets

There are also results which so far only apply to special classes of set.

Theorem (Orponen 2012)

Let E ⊆ R2 be a self-similar set with positive length. Then
dimHD(E ) = 1.

• NOTE: “positive length” has recently been relaxed to “dimension at
least 1” by Barany.
• Orponen’s proof was split into two cases:

1) ‘Dense rotations’: recent pioneering work of Hochman and Shmerkin on
fractal projection theorems gives the desired result.

2) ‘Discrete rotations’: This case can be reduced to the ‘no rotations
case’, and from there a delicate geometric argument yields the result.

Jonathan Fraser The distance set problem



Distance sets

There are also results which so far only apply to special classes of set.

Theorem (Orponen 2012)

Let E ⊆ R2 be a self-similar set with positive length. Then
dimHD(E ) = 1.

• NOTE: “positive length” has recently been relaxed to “dimension at
least 1” by Barany.
• Orponen’s proof was split into two cases:

1) ‘Dense rotations’: recent pioneering work of Hochman and Shmerkin on
fractal projection theorems gives the desired result.

2) ‘Discrete rotations’: This case can be reduced to the ‘no rotations
case’, and from there a delicate geometric argument yields the result.

Jonathan Fraser The distance set problem



Distance sets

• Mike Hochman and Pablo Shmerkin published an important paper in
2012 which studied the ergodic theory of the process of ‘blowing up’ a
measure.
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What did Hochman-Shmerkin prove?

• Key idea: One can understand a set or measure by understanding its
tangents.

• Refinement: One can understand a set or measure by understanding the
dynamics of the process of zooming in to its tangents.

• Ideas date back to Hillel Furstenberg in the 60s-70s, but rediscovered
recently by Furstenberg (2008), Gavish (2011), Hochman-Shmerkin (2012)
and Hochman (2010/2013).
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Magnification dynamics

Let {Dk}k∈N be the filtration of Rd by half open dyadic cubes.

Let TD : Rd → Rd be the orientation preserving similitude that maps
a dyadic cube D onto [0, 1)d .

The magnification µD of a measure µ ∈ P([0, 1)d) to D with
µ(D) > 0 is

µD =
1

µ(D)
TD(µ|D) ∈ P([0, 1)d)

If k ∈ N, let Dk(x) ∈ Dk be the cube with x ∈ Dk(x). Write

Ξ = {(x , µ) : µ ∈ P([0, 1)d) and µ(Dk(x)) > 0 for all k ∈ N}

and define the magnification operator M : Ξ→ Ξ by

M(x , µ) = (TD1(x)(x), µD1(x)).
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Magnification dynamics

Let (x , µ) ∈ Ξ and N ∈ N. The Nth scenery distribution of µ at x is

1

N

N−1∑
k=0

δMk (x ,µ) ∈ P(Ξ).

A micromeasure distribution of µ at x is an accumulation point of
the scenery distributions in P(Ξ) w.r.t. the weak topology.

The measure component of a micromeasure distribution is supported
on the micromeasures of µ at x (i.e. accumulation points of the
‘minimeasures’ µDk (x), as k →∞)
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CP-distributions

• A CP-distribution Q is a special type of micromeasure distribution.

• We say µ generates a CP-distribution Q if

(1) Q is the only micromeasure distribution of µ at µ almost every x ;

(2) and at µ almost every x the q-sparse scenery distributions

1

N

N−1∑
k=0

δMqk (x ,µ) ∈ P(Ξ)

converge to some distribution Qq for any q ∈ N, where each Qq may
be different from Q.

Condition (2) seems strange at first sight, but is essential to carry
geometric information from the micromeasure back to µ.

In ‘nice’ situations, (2) does not cause any problems in the proofs and
often Qq = Q for all q ∈ N.
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Example: CP distributions for self-similar measures

When one zooms in on a set or measure with a self-similar structure,
roughly speaking, one expects the tangent objects to be the same as the
original object.

Proposition (Hochman-Shmerkin 2012)

Let µ be a self-similar measure in Rd satisfying the strong separation
condition. Then there exists a Borel-set B with µ(B) > 0 and a similitude
S of Rd , such that

ν = µ(B)−1S(µ|B)

generates an ergodic CP distribution.
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Example: dimensions of projections

Let Πd ,k be the set of all orthogonal projections Rd → Rk , k < d .

Theorem (Hochman-Shmerkin 2012)

Suppose µ generates an ergodic CP distribution Qand let k ∈ N and
ε > 0. Then there exists an open dense set Uε ⊂ Πd ,k (which is also of full
measure) such that for all π ∈ Uε

dimH π(µ) > min{k , dimH µ} − ε.
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Example: dimensions of C 1 images

Theorem (Hochman-Shmerkin 2012)

Suppose that a measure µ on [0, 1]d generates an ergodic CP-chain Q.
Let π ∈ Πd ,k and ε > 0. Then there exists a δ > 0 such that for all C 1

maps g : [0, 1]d → Rk such that the maximal norm

sup
x∈supp(µ)

‖Dxg − π‖ < δ,

we have
dimH gµ > dimH πµ− ε.
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An application to the distance problem

Theorem (Ferguson, F, Sahlsten, 2013)

If µ on R2 generates an ergodic CP distribution and H1(sptµ) > 0, then

dimHD(sptµ) ≥ min{1, dimH µ}.

Theorem (Ferguson, F, Sahlsten, 2013)

If µ is a self-affine measure supported on a Bedford-McMullen carpet, then
µ generates an ergodic CP-distribution.

Corollary (Ferguson, F, Sahlsten, 2013)

If E is a Bedford-McMullen carpet with dimH E ≥ 1, then dimHD(E ) = 1.
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An outline of the proof

• Let µ be a probability measure with support K ⊂ R2 satisfying
H1(K ) > 0 and suppose µ generates an ergodic CP-distribution.

• Define the direction set of K by

Dir(K ) =

{
x − y

|x − y |
: x , y ∈ K , x 6= y

}

• Case 1: Dir(K ) is not dense in S1. This means K is 1-rectifiable.
Combined with the fact that K has positive length, a result of Besicovitch
and Miller gives that D(K ) contains an interval.

• Case 2: Dir(K ) is dense in S1. Let ε > 0 and choose π ∈ Dir(K ) such
that

dimH π(µ) > min{1, dimH µ} − ε.
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An outline of the proof

• Let g be the pinned distance map at x , g(z) = |x − z |

• Choose r > 0 small enough to guarantee that

sup
z∈B(y ,r)

‖Dzg − π‖ < δ.
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An outline of the proof

• It follows form the Besicovitch density point theorem that the measure ν
defined to be the restriction of µ to B(y , r) generates exactly the same
CP-chain as µ.

• Therefore

dimHD(K ) ≥ dimH g(ν) > dimH πµ− ε > min{1, dimH µ} − 2ε

completing the proof.
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Conformally generated fractals

In recent joint work with Mark Pollicott, we’ve been trying to apply this
result to prove the distance set conjecture for conformally generated
fractals.

• self-conformal sets

• Hyperbolic Julia sets

• Limit sets of Schottky groups are subsets of self-conformal sets
corresponding to subshifts of finite type.
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Conformally generated fractals

Proposition (Hochman-Shmerkin 2012)

Let µ be a self-similar measure in Rd satisfying the strong separation
condition. Then there exists a Borel-set B with µ(B) > 0 and a similitude
S of Rd , such that

ν = µ(B)−1S(µ|B)

generates an ergodic CP distribution.

Proposition (F, Pollicott 2014)

Let µ be a Gibbs measure supported on a self-conformal set satisfying the
strong separation condition. Then there exists a Borel-set B with
µ(B) > 0, a conformal map S of Rd and a measure µ′ ≡ µ, such that

ν = µ′(B)−1S(µ′|B)

generates an ergodic CP distribution.
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Conformally generated fractals

• The fact that only an image of a little piece of the original measure is
shown to generate an ergodic CP-distribution is not a problem in the
self-similar case.

• It is a problem in the self-conformal case, however, especially if the map
S is not a similarity.

• You can only obtain the distance set conjecture for S(E ) - which is very
unsatisfying!
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A further application to the distance problem

Theorem (F, Pollicott 2014)

If µ on R2 generates an ergodic CP distribution and H1(sptµ) > 0, then

dimHD(S(sptµ)) ≥ min{1, dimH µ}

for any conformal map S.

Corollary (F, Pollicott 2014)

If E is a self-conformal set with dimH E > 1, then dimHD(E ) = 1.
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Thank you!
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