Recent progress on the Assouad dimension

Jonathan M. Fraser

The University of Manchester, UK
Joint work with several people!

The Assouad dimension

Consider a bounded set $F \subset \mathbb{R}^{d}$.

The Assouad dimension

Consider a bounded set $F \subset \mathbb{R}^{d}$.
For small $r>0$, let $N_{r}(\cdot)$ be the familiar r-covering function.

The Assouad dimension

Consider a bounded set $F \subset \mathbb{R}^{d}$.
For small $r>0$, let $N_{r}(\cdot)$ be the familiar r-covering function.
The upper box dimension can be expressed as

$$
\begin{aligned}
\overline{\operatorname{dim}}_{\mathrm{B}} F=\inf \left\{\begin{array}{rl}
\alpha & :(\exists C)(\forall 0<r<1)(\forall x \in F) \\
& \left.N_{r}(F \cap B(x, 1)) \leqslant C\left(\frac{1}{r}\right)^{\alpha}\right\} .
\end{array} . . \begin{array}{l}
\end{array} .\right.
\end{aligned}
$$

The Assouad dimension

Consider a bounded set $F \subset \mathbb{R}^{d}$.
For small $r>0$, let $N_{r}(\cdot)$ be the familiar r-covering function.
The upper box dimension can be expressed as

$$
\begin{aligned}
\overline{\operatorname{dim}}_{\mathrm{B}} F=\inf \left\{\begin{array}{rl}
\alpha & :(\exists C)(\forall 0<r<1)(\forall x \in F) \\
& \left.N_{r}(F \cap B(x, 1)) \leqslant C\left(\frac{1}{r}\right)^{\alpha}\right\} .
\end{array} . . \begin{array}{rl}
\end{array} .\right.
\end{aligned}
$$

which motivates

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}} F=\inf \left\{\begin{array}{rl}
\alpha & :(\exists C)(\forall 0<r<R<1)(\forall x \in F) \\
& \left.N_{r}(F \cap B(x, R)) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}
\end{array} .\right.
\end{aligned}
$$

The Assouad dimension

Consider a bounded set $F \subset \mathbb{R}^{d}$.
For small $r>0$, let $N_{r}(\cdot)$ be the familiar r-covering function.
The upper box dimension can be expressed as

$$
\begin{aligned}
\overline{\operatorname{dim}}_{\mathrm{B}} F=\inf \left\{\begin{array}{rl}
\alpha & :(\exists C)(\forall 0<r<1)(\forall x \in F) \\
& \left.N_{r}(F \cap B(x, 1)) \leqslant C\left(\frac{1}{r}\right)^{\alpha}\right\} .
\end{array} . . \begin{array}{rl}
\end{array} .\right.
\end{aligned}
$$

which motivates

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{A}} F=\inf \left\{\begin{array}{rl}
\alpha & :(\exists C)(\forall 0<r<R<1)(\forall x \in F) \\
& \left.N_{r}(F \cap B(x, R)) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}
\end{array} .\right.
\end{aligned}
$$

$\operatorname{dim}_{\mathrm{H}} F \leqslant \operatorname{dim}_{\mathrm{B}} F \leqslant \operatorname{dim}_{\mathrm{A}} F$

The Assouad dimension

- The Assouad dimension was introduced by Patrice Assouad in the 1970s

The Assouad dimension

- The Assouad dimension was introduced by Patrice Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embedding problems and PDEs

The Assouad dimension

- The Assouad dimension was introduced by Patrice Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embedding problems and PDEs

Robinson: Dimensions, Embeddings, and Attractors
Heinonen: Lectures on Analysis on Metric Spaces.

A motivating example...

Consider the standard Mandelbrot percolation on $[0,1]^{d}$ using an M^{d} grid and probability $p>M^{-d}$.

A motivating example...

Consider the standard Mandelbrot percolation on $[0,1]^{d}$ using an M^{d} grid and probability $p>M^{-d}$.

- There is a positive probability that the limit set Ω is non-empty.

A motivating example...

Consider the standard Mandelbrot percolation on $[0,1]^{d}$ using an M^{d} grid and probability $p>M^{-d}$.

- There is a positive probability that the limit set Ω is non-empty.
- Conditioned on non-extinction, $\operatorname{dim}_{H} \Omega=d+\log p / \log M$ almost surely.

A motivating example...

Consider the standard Mandelbrot percolation on $[0,1]^{d}$ using an M^{d} grid and probability $p>M^{-d}$.

- There is a positive probability that the limit set Ω is non-empty.
- Conditioned on non-extinction, $\operatorname{dim}_{H} \Omega=d+\log p / \log M$ almost surely.

Proposition (F.-Miao-Troscheit '14)

Almost surely (conditioned on non-extinction), one cannot embed Ω into \mathbb{R}^{d-1} via a bi-Lipschitz map.

A motivating example...

Consider the standard Mandelbrot percolation on $[0,1]^{d}$ using an M^{d} grid and probability $p>M^{-d}$.

- There is a positive probability that the limit set Ω is non-empty.
- Conditioned on non-extinction, $\operatorname{dim}_{\mathrm{H}} \Omega=d+\log p / \log M$ almost surely.

Proposition (F.-Miao-Troscheit '14)

Almost surely (conditioned on non-extinction), one cannot embed Ω into \mathbb{R}^{d-1} via a bi-Lipschitz map.

Proof.

Independent of p, conditioned on non-extinction, $\operatorname{dim}_{\mathrm{A}} \Omega=d$ almost surely.

A motivating example...

Consider the standard Mandelbrot percolation on $[0,1]^{d}$ using an M^{d} grid and probability $p>M^{-d}$.

- There is a positive probability that the limit set Ω is non-empty.
- Conditioned on non-extinction, $\operatorname{dim}_{H} \Omega=d+\log p / \log M$ almost surely.

Proposition (F.-Miao-Troscheit '14)

Almost surely (conditioned on non-extinction), one cannot embed Ω into \mathbb{R}^{d-1} via a bi-Lipschitz map.

Proof.

Independent of p, conditioned on non-extinction, $\operatorname{dim}_{\mathrm{A}} \Omega=d$ almost surely.
We recently learned that the Assouad dimension result follows from earlier work of Berlinkov-Jarvenpää.

Self-similar sets

Let $F \subseteq[0,1]^{d}$ be the attractor of a finite IFS of contracting similarities $\left\{S_{i}\right\}_{i \in \mathcal{I}}$.

Self-similar sets

Let $F \subseteq[0,1]^{d}$ be the attractor of a finite IFS of contracting similarities $\left\{S_{i}\right\}_{i \in \mathcal{I}}$.
Let $c_{i} \in(0,1)$ be the contraction ratio of S_{i}.

Self-similar sets

Let $F \subseteq[0,1]^{d}$ be the attractor of a finite IFS of contracting similarities $\left\{S_{i}\right\}_{i \in \mathcal{I}}$.
Let $c_{i} \in(0,1)$ be the contraction ratio of S_{i}.
There is a unique $s \geqslant 0$ satisfying

$$
\sum_{i \in \mathcal{I}} c_{i}^{s}=1
$$

Self-similar sets

Let $F \subseteq[0,1]^{d}$ be the attractor of a finite IFS of contracting similarities $\left\{S_{i}\right\}_{i \in \mathcal{I}}$.
Let $c_{i} \in(0,1)$ be the contraction ratio of S_{i}.
There is a unique $s \geqslant 0$ satisfying

$$
\sum_{i \in \mathcal{I}} c_{i}^{s}=1
$$

If one can find an open set $\mathcal{O} \subset[0,1]^{d}$ such that

- $S_{i}(\mathcal{O}) \subset \mathcal{O}$ for all $i \in \mathcal{I}$
- $S_{i}(\mathcal{O}) \cap S_{j}(\mathcal{O})=\emptyset$ for all $i \neq j \in \mathcal{I}$
then we say the open set condition is satisfied for this IFS.

Self-similar sets

Self-similar sets

If the OSC is satisfied, then

- $\operatorname{dim}_{\mathrm{H}} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F=s$
- $0<\mathcal{H}^{s}(F)<\infty$

Self-similar sets

If the OSC is satisfied, then

- $\operatorname{dim}_{\mathrm{H}} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F=s$
- $0<\mathcal{H}^{s}(F)<\infty$

If the OSC is not satisfied, then

- $\operatorname{dim}_{\mathrm{H}} F=\overline{\operatorname{dim}}_{\mathrm{B}} F \leqslant s$
- $0 \leqslant \mathcal{H}^{\operatorname{dim}_{H} F}(F)<\infty$

Self-similar sets

If the OSC is satisfied, then

- $\operatorname{dim}_{\mathrm{H}} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F=s$
- $0<\mathcal{H}^{s}(F)<\infty$

If the OSC is not satisfied, then

- $\operatorname{dim}_{\mathrm{H}} F=\overline{\operatorname{dim}}_{\mathrm{B}} F \leqslant s$
- $0 \leqslant \mathcal{H}^{\operatorname{dim}_{\mathrm{H}} F}(F)<\infty$

Proposition (F. '14)

For any $\varepsilon \in(0,1)$, there exists a self-similar set $F \subseteq[0,1]$ with $\operatorname{dim}_{H} F \leqslant \varepsilon<1=\operatorname{dim}_{A} F$.

The weak separation property

- Introduced by Zerner (1996) and Lau-Ngai (1999).

The weak separation property

- Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$
\mathcal{E}=\left\{S_{\mathbf{i}}^{-1} \circ S_{\mathbf{j}}: \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^{*}\right\}
$$

The weak separation property

- Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$
\mathcal{E}=\left\{S_{i}^{-1} \circ S_{\mathbf{j}}: \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^{*}\right\}
$$

An IFS satisfies the weak separation property if

$$
\mathrm{Id} \notin \overline{\mathcal{E} \backslash\{\mathrm{Id}\}}
$$

The weak separation property

- Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$
\mathcal{E}=\left\{S_{i}^{-1} \circ S_{\mathbf{j}}: \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^{*}\right\}
$$

An IFS satisfies the weak separation property if

$$
\mathrm{Id} \notin \overline{\mathcal{E} \backslash\{\mathrm{Id}\}}
$$

- Zerner proved: F in general position and satisfies WSP $\Rightarrow \mathcal{H}^{\operatorname{dim}_{H} F}(F)>0$

The weak separation property

- Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$
\mathcal{E}=\left\{S_{i}^{-1} \circ S_{\mathbf{j}}: \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^{*}\right\}
$$

An IFS satisfies the weak separation property if

$$
\mathrm{Id} \notin \overline{\mathcal{E} \backslash\{\mathrm{Id}\}}
$$

- Zerner proved: F in general position and satisfies WSP $\Rightarrow \mathcal{H}^{\operatorname{dim}_{H} F}(F)>0$

Theorem (F.-Henderson-Olson-Robinson '15)

Let F be a self-similar subset of $[0,1]$.

- If the WSP is satisfied, then $\operatorname{dim}_{A} F=\operatorname{dim}_{H} F$.
- If the WSP is not satisfied, then $\operatorname{dim}_{A} F=1$.

Assouad dimension and positive Hausdorff measure

Theorem (Farkas-F. '15)
Let F be a (graph-directed) self-similar subset of $[0,1]^{d}$ with $\operatorname{dim}_{H} F=t$.

- If $\mathcal{H}^{t}(F)>0$, then F is Ahlfors regular

Assouad dimension and positive Hausdorff measure

Theorem (Farkas-F. '15)

Let F be a (graph-directed) self-similar subset of $[0,1]^{d}$ with $\operatorname{dim}_{H} F=t$.

- If $\mathcal{H}^{t}(F)>0$, then F is Ahlfors regular $\quad\left(\mathcal{H}^{t}(B(x, r)) \asymp r^{t}\right)$.

Assouad dimension and positive Hausdorff measure

Theorem (Farkas-F. '15)

Let F be a (graph-directed) self-similar subset of $[0,1]^{d}$ with $\operatorname{dim}_{H} F=t$.

- If $\mathcal{H}^{t}(F)>0$, then F is Ahlfors regular $\quad\left(\mathcal{H}^{t}(B(x, r)) \asymp r^{t}\right)$.

The proof uses the fact that the t-dimensional Hausdorff content and Hausdorff measure coincide for (graph-directed) self-similar sets.

Assouad dimension and positive Hausdorff measure

Theorem (Farkas-F. '15)

Let F be a (graph-directed) self-similar subset of $[0,1]^{d}$ with $\operatorname{dim}_{H} F=t$.

- If $\mathcal{H}^{t}(F)>0$, then F is Ahlfors regular $\quad\left(\mathcal{H}^{t}(B(x, r)) \asymp r^{t}\right)$.

The proof uses the fact that the t-dimensional Hausdorff content and Hausdorff measure coincide for (graph-directed) self-similar sets.

Corollary (Farkas-F. '15)

Let F be a self-similar subset of $[0,1]$ with $\operatorname{dim}_{H} F=t<1$.

- $\mathcal{H}^{t}(F)>0 \Rightarrow \operatorname{dim}_{A} F=t$.
- $\mathcal{H}^{t}(F)=0 \Rightarrow \operatorname{dim}_{A} F=1$.

Projections of planar sets

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.

Projections of planar sets

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.
For $\theta \in[0,2 \pi)$, let π_{θ} denote projection onto a line in direction θ.

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in[0,2]$. Then for almost all $\theta \in[0,2 \pi)$

$$
\operatorname{dim}_{H} \pi_{\theta} F=\min \{1, s\}
$$

Projections of planar sets

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.
For $\theta \in[0,2 \pi)$, let π_{θ} denote projection onto a line in direction θ.

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in[0,2]$. Then for almost all $\theta \in[0,2 \pi)$

$$
\operatorname{dim}_{H} \pi_{\theta} F=\min \{1, s\}
$$

The theorem (and its many variations) has inspired an enormous amount of work in fractal geometry and geometric measure theory.

Projections of planar sets

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.
For $\theta \in[0,2 \pi)$, let π_{θ} denote projection onto a line in direction θ.

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in[0,2]$. Then for almost all $\theta \in[0,2 \pi)$

$$
\operatorname{dim}_{H} \pi_{\theta} F=\min \{1, s\}
$$

The theorem (and its many variations) has inspired an enormous amount of work in fractal geometry and geometric measure theory.

Theorem (Jarvenpää '94, Falconer-Howroyd '97, Howroyd '01)

Let F be an analytic subset of the plane. Then the packing and upper and lower box dimensions of $\pi_{\theta} F$ are all almost surely constant.

Projections of planar sets

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.
For $\theta \in[0,2 \pi)$, let π_{θ} denote projection onto a line in direction θ.

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in[0,2]$. Then for almost all $\theta \in[0,2 \pi)$

$$
\operatorname{dim}_{H} \pi_{\theta} F=\min \{1, s\}
$$

The theorem (and its many variations) has inspired an enormous amount of work in fractal geometry and geometric measure theory.

Theorem (Jarvenpää '94, Falconer-Howroyd '97, Howroyd '01)

Let F be an analytic subset of the plane. Then the packing and upper and lower box dimensions of $\pi_{\theta} F$ are all almost surely constant.
Note: the almost sure value can be strictly less than $\min \{1, s\}$.

Projections of planar sets

What can one say about the Assouad dimension?

Projections of planar sets

What can one say about the Assouad dimension?
Theorem (F.-Orponen '15)
Let F be a subset of the plane with Assouad dimension $s \in[0,2]$. Then for almost all $\theta \in[0,2 \pi)$

$$
\operatorname{dim}_{A} \pi_{\theta} F \geqslant \min \{1, s\} .
$$

Projections of planar sets

What can one say about the Assouad dimension?

Theorem (F.-Orponen '15)

Let F be a subset of the plane with Assouad dimension $s \in[0,2]$. Then for almost all $\theta \in[0,2 \pi)$

$$
\operatorname{dim}_{A} \pi_{\theta} F \geqslant \min \{1, s\} .
$$

- This is a partial Marstrand Theorem for Assouad dimension.

Projections of planar sets

What can one say about the Assouad dimension?

Theorem (F.-Orponen '15)

Let F be a subset of the plane with Assouad dimension $s \in[0,2]$. Then for almost all $\theta \in[0,2 \pi)$

$$
\operatorname{dim}_{A} \pi_{\theta} F \geqslant \min \{1, s\} .
$$

- This is a partial Marstrand Theorem for Assouad dimension.
- We can use self-similar sets to show that a full Marstrand Theorem for Assouad dimension does not exist!

Projections of planar sets

Consider the following example of Peres, Simon and Solomyak from 2000:

The contraction ratio is $c \in(1 / 5,1 / 3)$, and the Hausdorff dimension is $s=-\log 3 / \log c$.

Projections of planar sets

Theorem (Peres-Simon-Solomyak '00)

There is a non-empty open interval of projections $J \subseteq\left\{\theta: \pi_{\theta}\right.$ not injective $\}$ such that for almost all $\theta \in J$ we have

$$
\mathcal{H}^{s}\left(\pi_{\theta} F\right)=0 .
$$

Projections of planar sets

Since $c<1 / 3$, we can find an open interval I where the projection is self-similar and satisfies the OSC, in particular, for all $\theta \in I$ we have

$$
\mathcal{H}^{s}\left(\pi_{\theta} F\right)>0 .
$$

Projections of planar sets

In summary:

Projections of planar sets

In summary:

There are disjoint non-empty intervals $I, J \subseteq[0,2 \pi)$ such that:

- For all $\theta \in I, \mathcal{H}^{s}\left(\pi_{\theta} F\right)>0$

Projections of planar sets

In summary:

There are disjoint non-empty intervals $I, J \subseteq[0,2 \pi)$ such that:

- For all $\theta \in I, \mathcal{H}^{s}\left(\pi_{\theta} F\right)>0 \Rightarrow \operatorname{dim}_{A} \pi_{\theta} F=s<1$

Projections of planar sets

In summary:

There are disjoint non-empty intervals $I, J \subseteq[0,2 \pi)$ such that:

- For all $\theta \in I, \mathcal{H}^{s}\left(\pi_{\theta} F\right)>0 \Rightarrow \operatorname{dim}_{A} \pi_{\theta} F=s<1$
- For almost all $\theta \in J, \mathcal{H}^{s}\left(\pi_{\theta} F\right)=0$

Projections of planar sets

In summary:

There are disjoint non-empty intervals $I, J \subseteq[0,2 \pi)$ such that:

- For all $\theta \in I, \mathcal{H}^{s}\left(\pi_{\theta} F\right)>0 \Rightarrow \operatorname{dim}_{A} \pi_{\theta} F=s<1$
- For almost all $\theta \in J, \mathcal{H}^{s}\left(\pi_{\theta} F\right)=0 \Rightarrow \operatorname{dim}_{A} \pi_{\theta} F=1$

Projections of planar sets

In summary:

There are disjoint non-empty intervals $I, J \subseteq[0,2 \pi)$ such that:

- For all $\theta \in I, \mathcal{H}^{s}\left(\pi_{\theta} F\right)>0 \Rightarrow \operatorname{dim}_{A} \pi_{\theta} F=s<1$
- For almost all $\theta \in J, \mathcal{H}^{s}\left(\pi_{\theta} F\right)=0 \Rightarrow \operatorname{dim}_{A} \pi_{\theta} F=1$

The Assouad dimension of $\pi_{\theta} F$ is not almost surely constant!

Projections of self-similar sets

Theorem (F.-Orponen '15)

Let F be a non-trivial planar self-similar set.
If all rotations are rational, then, for a given $\theta \in[0,2 \pi)$, we have:
(1) If $\mathcal{H}^{\operatorname{dim}_{H} \pi_{\theta} F}\left(\pi_{\theta} F\right)>0$, then $\operatorname{dim}_{A} \pi_{\theta} F=\operatorname{dim}_{H} \pi_{\theta} F$
(2) If $\mathcal{H}^{\operatorname{dim}_{H} \pi_{\theta} F}\left(\pi_{\theta} F\right)=0$, then $\operatorname{dim}_{A} \pi_{\theta} F=1$.

If one of the rotations is irrational, then

$$
\operatorname{dim}_{A} \pi_{\theta} F=1
$$

for all $\theta \in[0,2 \pi)$.

Open questions

Let F be a subset of the plane.

Open questions

Let F be a subset of the plane.

Question

How many distinct values can $\operatorname{dim}_{A} \pi_{\theta} F$ take with positive measure?

Open questions

Let F be a subset of the plane.

Question

How many distinct values can $\operatorname{dim}_{A} \pi_{\theta} F$ take with positive measure?

Question

If only two values are possible, are they always $\operatorname{dim}_{\mathrm{A}} F$ and 1 ?

Merci de votre attention!

Porquerolles Island, 2011

Some references－all on the ArXiv

䡒 Á．Farkas and J．M．Fraser．On the equality of Hausdorff measure and Hausdorff content，J．Fract．Geom．，2，（2015），403－429．

國 J．M．Fraser．Assouad type dimensions and homogeneity of fractals， Trans．Amer．Math．Soc．，366，（2014），6687－6733．

嗇 J．M．Fraser，A．M．Henderson，E．J．Olson and J．C．Robinson．On the Assouad dimension of self－similar sets with overlaps， Adv．Math．，273，（2015），188－214．

圊 J．M．Fraser，J．J．Miao and S．Troscheit．The Assouad dimension of randomly generated fractals，preprint，（2014），arXiv：1410．6949．

围 J．M．Fraser and T．Orponen．The Assouad dimensions of projections of planar sets，preprint，（2015），arXiv：1509．01128．

