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The Assouad dimension

Consider a bounded set F ⊂ Rd .

For small r > 0, let Nr (·) be the familiar r -covering function.

The upper box dimension can be expressed as

dimBF = inf

{
α : (∃C ) (∀0 < r < 1) (∀x ∈ F )

Nr

(
F ∩ B(x , 1)

)
6 C

(
1

r

)α
}
.

which motivates

dimA F = inf

{
α : (∃C ) (∀0 < r < R < 1) (∀x ∈ F )

Nr

(
F ∩ B(x ,R)

)
6 C

(
R

r

)α
}
.

dimH F 6 dimBF 6 dimA F
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The Assouad dimension

The Assouad dimension was introduced by Patrice Assouad in the 1970s

Important tool in the study of quasi-conformal mappings, embedding
problems and PDEs

Robinson: Dimensions, Embeddings, and Attractors

Heinonen: Lectures on Analysis on Metric Spaces.
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A motivating example...

Consider the standard Mandelbrot percolation on [0, 1]d using an Md grid and
probability p > M−d .

• There is a positive probability that the limit set Ω is non-empty.
• Conditioned on non-extinction, dimH Ω = d + log p/ logM almost surely.

Proposition (F.-Miao-Troscheit ’14)

Almost surely (conditioned on non-extinction), one cannot embed Ω into Rd−1

via a bi-Lipschitz map.

Proof.
Independent of p, conditioned on non-extinction, dimA Ω = d almost surely.

We recently learned that the Assouad dimension result follows from earlier work
of Berlinkov-Jarvenpää.
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Self-similar sets

Let F ⊆ [0, 1]d be the attractor of a finite IFS of contracting similarities {Si}i∈I .

Let ci ∈ (0, 1) be the contraction ratio of Si .

There is a unique s > 0 satisfying ∑
i∈I

csi = 1.

If one can find an open set O ⊂ [0, 1]d such that

Si (O) ⊂ O for all i ∈ I

Si (O) ∩ Sj(O) = ∅ for all i 6= j ∈ I

then we say the open set condition is satisfied for this IFS.
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Self-similar sets
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Self-similar sets

If the OSC is satisfied, then
• dimH F = dimBF = dimA F = s
• 0 < Hs(F ) <∞

If the OSC is not satisfied, then
• dimH F = dimBF 6 s
• 0 6 HdimH F (F ) <∞

Proposition (F. ’14)

For any ε ∈ (0, 1), there exists a self-similar set F ⊆ [0, 1] with
dimH F 6 ε < 1 = dimA F .

Jonathan M. Fraser Assouad dimension



Self-similar sets

If the OSC is satisfied, then
• dimH F = dimBF = dimA F = s
• 0 < Hs(F ) <∞

If the OSC is not satisfied, then
• dimH F = dimBF 6 s
• 0 6 HdimH F (F ) <∞

Proposition (F. ’14)

For any ε ∈ (0, 1), there exists a self-similar set F ⊆ [0, 1] with
dimH F 6 ε < 1 = dimA F .

Jonathan M. Fraser Assouad dimension



Self-similar sets

If the OSC is satisfied, then
• dimH F = dimBF = dimA F = s
• 0 < Hs(F ) <∞

If the OSC is not satisfied, then
• dimH F = dimBF 6 s
• 0 6 HdimH F (F ) <∞

Proposition (F. ’14)

For any ε ∈ (0, 1), there exists a self-similar set F ⊆ [0, 1] with
dimH F 6 ε < 1 = dimA F .

Jonathan M. Fraser Assouad dimension



The weak separation property

• Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

E =

{
S−1i ◦ Sj : i 6= j ∈ I∗

}
An IFS satisfies the weak separation property if

Id /∈ E \ {Id}

• Zerner proved: F in general position and satisfies WSP ⇒ HdimH F (F ) > 0

Theorem (F.-Henderson-Olson-Robinson ’15)

Let F be a self-similar subset of [0, 1].

• If the WSP is satisfied, then dimA F = dimH F .
• If the WSP is not satisfied, then dimA F = 1.
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Assouad dimension and positive Hausdorff measure

Theorem (Farkas-F. ’15)

Let F be a (graph-directed) self-similar subset of [0, 1]d with dimH F = t.

• If Ht(F ) > 0, then F is Ahlfors regular

(Ht(B(x , r)) � r t).

The proof uses the fact that the t-dimensional Hausdorff content and Hausdorff
measure coincide for (graph-directed) self-similar sets.

Corollary (Farkas-F. ’15)

Let F be a self-similar subset of [0, 1] with dimH F = t < 1.

• Ht(F ) > 0 ⇒ dimA F = t.
• Ht(F ) = 0 ⇒ dimA F = 1.
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Projections of planar sets

A classical problem in geometric measure theory is to understand how dimension
behaves under orthogonal projection.

For θ ∈ [0, 2π), let πθ denote projection onto a line in direction θ.

Theorem (Marstrand’s Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension s ∈ [0, 2].
Then for almost all θ ∈ [0, 2π)

dimH πθF = min{1, s}.

The theorem (and its many variations) has inspired an enormous amount of work
in fractal geometry and geometric measure theory.

Theorem (Jarvenpää ’94, Falconer-Howroyd ’97, Howroyd ’01)

Let F be an analytic subset of the plane. Then the packing and upper and lower
box dimensions of πθF are all almost surely constant.
Note: the almost sure value can be strictly less than min{1, s}.
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Projections of planar sets

What can one say about the Assouad dimension?

Theorem (F.-Orponen ’15)

Let F be a subset of the plane with Assouad dimension s ∈ [0, 2]. Then for
almost all θ ∈ [0, 2π)

dimA πθF > min{1, s}.

• This is a partial Marstrand Theorem for Assouad dimension.

• We can use self-similar sets to show that a full Marstrand Theorem for Assouad

dimension does not exist!
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Projections of planar sets

Consider the following example of Peres, Simon and Solomyak from 2000:

The contraction ratio is c ∈ (1/5, 1/3), and the Hausdorff dimension is
s = − log 3/ log c .
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Projections of planar sets

Theorem (Peres-Simon-Solomyak ’00)

There is a non-empty open interval of projections J ⊆ {θ : πθ not injective} such
that for almost all θ ∈ J we have

Hs(πθF ) = 0.
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Projections of planar sets

Since c < 1/3, we can find an open interval I where the projection is self-similar
and satisfies the OSC, in particular, for all θ ∈ I we have

Hs(πθF ) > 0.
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Projections of planar sets

In summary:

There are disjoint non-empty intervals I , J ⊆ [0, 2π) such that:

• For all θ ∈ I , Hs(πθF ) > 0 ⇒ dimA πθF = s < 1

• For almost all θ ∈ J, Hs(πθF ) = 0 ⇒ dimA πθF = 1

The Assouad dimension of πθF is not almost surely constant!
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• For all θ ∈ I , Hs(πθF ) > 0 ⇒ dimA πθF = s < 1

• For almost all θ ∈ J, Hs(πθF ) = 0 ⇒ dimA πθF = 1

The Assouad dimension of πθF is not almost surely constant!

Jonathan M. Fraser Assouad dimension



Projections of self-similar sets

Theorem (F.-Orponen ’15)

Let F be a non-trivial planar self-similar set.

If all rotations are rational, then, for a given θ ∈ [0, 2π), we have:

1 If HdimH πθF (πθF ) > 0, then dimA πθF = dimH πθF

2 If HdimH πθF (πθF ) = 0, then dimA πθF = 1.

If one of the rotations is irrational, then

dimA πθF = 1

for all θ ∈ [0, 2π).
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Open questions

Let F be a subset of the plane.

Question
How many distinct values can dimA πθF take with positive measure?

Question
If only two values are possible, are they always dimA F and 1?
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Merci de votre attention!

Porquerolles Island, 2011
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