The mobility of stationary measures

Mark Pollicott

Warwick University

Manchester, 22 July 2015

overview Stationary measures

Overview

We can consider a limit set A for a pair of contractions $T_0: [0,1] \rightarrow [0,1]$ and $T_1: [0,1] \rightarrow [0,1]$ on the line.

Question

How does the set Λ change as T_0 , T_1 change?

We can consider a stationary probability measure μ for weights p_0, p_1 which is supported on the closed set Λ .

Question

How does the measure μ change as T_0 , T_1 and p_0 , p_1 change?

- Usually the dependence on T_i is more subtle (interesting?) than the dependence on p_i .
- Generally we need more smoothness in the dependence of p_i and T_i then we can expect from the μ .
- We will make a detour in the exposition to take in the scenery (e.g., the Monge Optimization Problem).

overview Stationary measures

Limits sets of contractions

Let us consider a specific setting of the unit interval [0,1] and two C^∞ contractions

$$\mathcal{T}_0: [0,1]
ightarrow [0,1]$$
 and $\mathcal{T}_1: [0,1]
ightarrow [0,1]$

Often we will ask (for convenience?) for disjoint images (i.e., $T_0[0,1] \cap T_1[0,1] = \emptyset$).

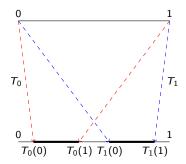


Figure: Two contractions on the unit interval

Limit sets Examples Stationary measures Examples

The limit set

Definition

The limit set $\Lambda = \Lambda(T_0, T_1)$ is the smallest closed set such that $T_0 \Lambda \cup T_1 \Lambda = \Lambda$

Equivalently, and perhaps more intuitively, we can define the set by

$$\Lambda = \left\{ \lim_{n \to \infty} T_{i_0} \cdots T_{i_n}(0) : i_0, \cdots, i_n \in \{0, 1\} \right\}$$

- **(**) The set Λ is a Cantor set (when $T_0[0,1] \cap T_1[0,1] = \emptyset$).
- ② The construction of Λ is often called an "iterated function scheme" or "cookie cutter" (but as seldom as possible by me).

When you get bored try counting the number of mistakes in these slides. First to spot 100 should shout "Bingo"

Limit sets Examples Stationary measures Examples

Example: middle third Cantor set

We can let

$$T_0(x) = \frac{x}{3}$$
 and $T_1(x) = \frac{x}{3} + \frac{2}{3}$

then Λ is the usual middle third Cantor set, i.e.,

$$\Lambda = \left\{ \sum_{n=0}^{\infty} \frac{i_n}{3^{n+1}} : i_0, i_1, i_2, i_3, \dots \in \{0, 2\} \right\}.$$

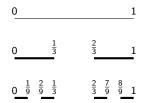


Figure: The usual construction of the middle third Cantor set

More examples

() More generally, for any $0 < \lambda < \frac{1}{2}$ we can let

$$T_0(x) = \lambda x$$
 and $T_1(x) = \lambda x + (1 - \lambda)$

Limit sets Examples

Examples

then Λ is the usual middle $(1 - 2\lambda)$ -Cantor set.

(This is a "self-similar" set, since the contractions for T_0 , T_1 are the same).

2 Even more generally, for any $0 < \lambda_1, \lambda_2 < 1$ with $\lambda_1 + \lambda_2 = 1$ we can let

$$T_0(x) = \lambda_1 x$$
 and $T_1(x) = \lambda_2 x + (1 - \lambda_2)$

and again Λ is a limit set.

(The contractions for T_0 , T_1 may now be different making the Cantor set seem lopsided).

For a nonlinear example we can consider

$$T_0(x) = \frac{1}{x+2}$$
 and $T_1(x) = \frac{1}{x+7}$

then the limit set Λ consist of those 0 < x < 1 whose continued fraction expansions consist only of digits 2 and 7.

Limit sets Examples Stationary measures Examples

Stationary measures

We next want to introduce probability measures supported on the limit set Λ .

The choice of measure will be determined by C^{∞} weight functions $p_0, p_1 : [0, 1] \rightarrow (0, 1)$ such that $p_0(x) + p_1(x) = 1$.

Definition

We say that a probability μ is a stationary measure if for any $f \in C^0([0,1],\mathbb{R})$ we have that

$$\int f(x) d\mu(x) = \int (p_0(x) f(T_0 x) + p_1(x) f(T_1 x)) d\mu(x)$$

Equivalently, we can also construct μ by:

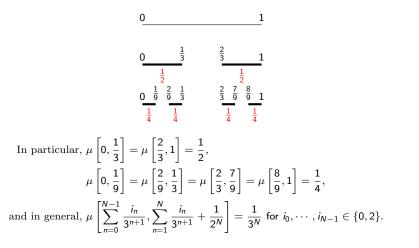
$$\int f d\mu = \lim_{n \to +\infty} \sum_{i_0, \cdots, i_{n-1} \in \{0,1\}} p_{i_0}(0) p_{i_1}(T_{i_0}0) \cdots p_{i_{n-1}}(T_{i_0} \cdots T_{i_{n-2}}0) f(T_{i_0} \cdots T_{i_{n-1}}0)$$

(i.e., as a limit of suitably weighted measures on 2^n image points).

Limit sets Examples Stationary measures Examples

(1/2, 1/2)-Bernoulli measures on middle third Cantor set

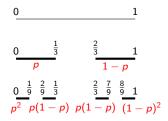
If we let $T_0 = \frac{x}{3}$, $T_1(x) = \frac{x}{3} + \frac{1}{3}$ and $p_0 = p_1 = \frac{1}{2}$ then the measure is the natural (1/2, 1/2)-Bernoulli measure.



Limit sets Examples Stationary measures Examples

(p, 1 - p)-Bernoulli measures

If we let $p_0 = p$ and $p_1 = 1 - p$ then the measure is the natural (p, 1 - p)-Bernoulli measure.



Thus
$$\mu \left[0, \frac{1}{3}\right] = p, \mu \left[\frac{2}{3}, 1\right] = 1 - p$$

 $\mu \left[0, \frac{1}{9}\right] = p^2, \mu \left[\frac{2}{9}, \frac{1}{3}\right] = p(1-p), \mu \left[\frac{2}{3}, \frac{7}{9}\right] = p(1-p), \mu \left[\frac{8}{9}, 1\right] = (1-p)^2$
and $\mu \left[\sum_{n=0}^{N-1} \frac{i_n}{3^{n+1}}, \sum_{n=0}^{N-1} \frac{i_n}{3^{n+1}} + \frac{1}{3^N}\right] = p^N \prod_{n=0}^{N-1} \left(\frac{1}{p} - 1\right)^{i_n/2}$ for $i_0, \dots, i_{N-1} \in \{0, 2\}$.

The problem Kantorovich-Wasserstein metric An example

Monge Transportation problem (1781)

Assume we have a number of mines producing iron ore and a number of factories which need to be supplied. Assume that the mine at $x \in [0, 1]^d$ supplies the factory at $y \in [0, 1]^d$ and that the cost of transporting the ore from mine to factory is proportional to the distance |x - y|. The problem is to minimise the total cost over different choices of pairings x to y.

We can approximate the distribution of mines by a probability μ and the distribution of factories by a probability ν . When possible, we want to find a map $T : [0, 1]^d \rightarrow [0, 1]^d$ (i.e., T(x) = y) which minimises

$$\inf\left\{\int_X |x-T(x)|d\mu(x): T_*\mu=\nu\right\}.$$

Example (Trivial example, d = 1)

If μ , ν have no atoms and are supported on [0, 1] there is a solution $T = F_{\nu}^{-1} \circ F_{\mu} : [0, 1] \to [0, 1]$ where $F_{\mu}(x) = \mu([0, x])$ and $F_{\nu}(x) = \nu([0, x])$ for 0 < x < 1.

The problem Kantorovich-Wasserstein metric An example

Gaspard Monge (1746-1818)

Gaspard Monge had a remarkably successful career under three rather different types of government in France.

- A prodigy, he was made a professor at the age of 22 at the École Royale du Génie at Mézières in pre-revolutionary France. He invented descriptive geometry (representing three dimensional figures in two dimensions, for example) but the theory was surpressed as a military secret for many years.
- The son of a wine merchant, he was a keen supporter of the French Revolution and was Minister for the Navy. In this post he was kind to Napoleon, then a young officer. During the Terror he was denounced, but escaped execution.
- Subsequently, he became one of Napoleon's closest friends during the Emperor's reign, and Director of the École Polytechnique.

His name is one of the 72 names of scientists inscribed on the Eiffel tower

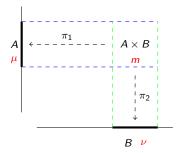
The problem Kantorovich-Wasserstein metric An example

The optimisation problem

A more general formulation due to Kantorovich is to minimise

$$d(\mu,\nu) := \inf \left\{ \int_{X \times X} |x - y| dm(x,y) : \pi_1 m = \mu, \pi_2 m = \nu \right\}$$

where the infimum is over probability measures *m* on $X \times X$ projecting to ν and μ .



i.e.,
$$\pi_1 m(A) = m(A \times X)$$
 and $\pi_2 m(B) = m(X \times B)$.

The problem Kantorovich-Wasserstein metric An example

Kantorovich-Wasserstein metric

Kantorovich's work (from 1942) lead to the Nobel Prize in Economics in 1975.

An equivalent definition using Lipschitz functions is in a paper of Kantorovich and Rubinshtein from 1958.

$$d(\mu,\nu) := \sup\left\{ \left| \int f d\mu - \int f d\nu \right| \ : \ \|f\|_{Lip} \leq 1 \right\} \text{ where } \|f\|_{Lip} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} d\mu$$

The name "Wasserstein distance" was coined by Dobrushin in 1970, after the Russian mathematician Leonid Wasserstein who re-discovered the concept in 1969. A vigorous defence of Kantorovich's contribution appears in a 2005 article of his friend Vershik.

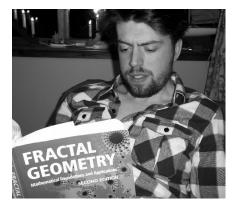
I once collected Dobrushin (who was a big mathematician, in all senses of the word) from Coventy train station in a Ford Fiesta (which was a smallish car). The same year I also collected Vershik from the same station in the same car.

The problem Kantorovich-Wasserstein metric An example

Jan

Jon's paper on the Wasserstein-Kantorovich metric

While at Warwick, Jon wrote a short paper which computed explicitly the Wasserstein-Kantorovich metric for very special examples of stationary measures.



First and second moments for self-similar couplings and Wasserstein distances

Jonathan M. Fraser

Mathematics Institute, Zeeman Building, University of Warwick, Convertey, CV4 7AL, UK s-mail: ins.fraser729/mmail.com

fantary 29, 2014

Abstract

We study appear for the Waterwise distance to the matter of still studies assume. Chargents the distance between the macronic matching strength strength strength strength associate distance between the macronic matching strength strength strength strength strengths. We have now alterian as sufficient associate strength in spinstance of the strength strength strength strength strength strength one strength strength strength strength strength strength strength strength strengthstrength in the regularity strength strengt

References Solver Cassification 2020; Primary 26500, 26533, 00805; Neumdary 26579

Key work and pleases: Wassenieta meteic, self-similar measure, self-similar coupling.

1 Introduction

The Warentzin metric is widely used as an information and computable distance functions between man distributions. In computer wiseless it is commandly predominal to a the 'warth memory' distance' and a reasonable of the 'ward' sequipoids to shange non-distribution into the states. For disserts distributions on disting sector one and wedge difficient globalization is defined as the distance, but in the modernist stating calculations can be for from trivial and hardwe minimizing certain meaner integrals over the space of complency which are measures on the product upper with the original measures as parameted samplings.

Figure: (a) Jon relaxing with a good book; (b) Another good read.

The problem Kantorovich-Wasserstein metric An example

Jon's Example

We can consider the Lipschitz function $f : [0,1] \to \mathbb{R}$ defined by $f(x) = \lambda x$ with $-1 \le \lambda \le 1$. One sees that $||f||_{Lip} = |\lambda| \le 1$.

Let us consider two stationary measures:

- **(**) $T_0(x) = cx + t_0$ with (p, 1 p)-Bernoulli stationary measure μ_{p,t_0} , and
- **2** $T_1(x) = cx + t_1$ with (q, 1 q)-Bernoulli stationary measure μ_{q,t_1} .

Theorem (J. Fraser, Proposition 2.5)

$$\int f(x)d\mu_{p,t_0}(x) - \int f(x)d\mu_{q,t_1}(x) = \frac{\lambda(p-q)(t_1-t_2)}{1-c}$$

In particular, we immediately see that

$$(p,t)\mapsto\int f(x)d\mu_{p,t}(x)$$

is real analytic.

So at least in this nice and explicit case we see that the dependence of the integrals of stationary measures has an analytic dependence.

The problem Kantorovich-Wasserstein metric An example

Jon's Example

In fact in this example it is possible to explicitly compute the Kantorovich-Wasserstein distance between the two stationary measures.

We recall that

$$d(\mu_{p,t_0},\mu_{q,t_1}) = \sup\left\{ \left| \int f(x) d\mu_{p,t_0}(x) - \int f(x) d\mu_{q,t_1}(x) \right| \; : \; \|f\|_{Lip} \leq 1 \right\}$$

Theorem (J. Fraser, Corollary 2.6)

One can show

$$d(\mu_{p,t_0},\mu_{q,t_1}) = rac{\lambda|p-q|(t_1-t_2)}{1-c}.$$

Moreover, the supremum in the definition of the metric is realised by f(x) = x or f(x) = -x.

Question: How does the measure change in general?

We can consider the regularity of the dependence of the measures in the general setting. Assume that $T_0, T_1 : [0,1] \rightarrow [0,1]$ and $p_0, p_1 : [0,1] \rightarrow [0,1]$ are all C^k .

Assume first that we make a C^k perturbation in the weights.

Question

How does the set μ change as p_0, p_1 change? More precisely, if $f : [0, 1] \to \mathbb{R}$ is C^{∞} then what is the dependence of $\int f d\mu$?

Assume next that we make a C^k perturbation in the contractions.

Question

How does the measure μ change as T_0, T_1 change? More precisely, if $f : [0, 1] \to \mathbb{R}$ is C^{∞} then what is the dependence of $\int f d\mu$?

Two questions Some plots of examples The C^{k} case The C^{ω} case

Varying the weights (linear example)

Let us consider

- $T_0(x) = \frac{1}{4}x$ and $T_1(x) = \frac{1}{2}x + \frac{1}{2}$ and
- weights (p, 1 p) where 0 .

with stationary measure μ .

Let $f(x) = \sin(2\pi x)$ and we can consider $p \mapsto \int f d\mu$.

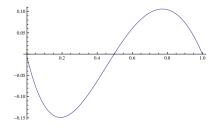


Figure: A plot of $\int f d\mu$ against 0

Two questions Some plots of examples The C^{k} case The C^{ω} case

Varying the contractions (linear example)

Let us consider

- $T_0(x) = cx$ (with $0 < c < \frac{1}{2}$) and $T_1(x) = \frac{1}{2}x + \frac{1}{2}$ and
- weights $(\frac{1}{2}, \frac{1}{2})$.

with stationary measure μ . Let $f(x) = \sin(2\pi x)$ and we can consider $p \mapsto \int f d\mu$.

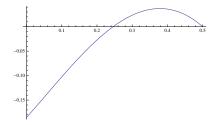


Figure: A plot of $\int f d\mu$ against $0 < c < \frac{1}{2}$

Two questions Some plots of examples The C^k case The C^{ω} case

Varying the weights (non-linear example)

Let us consider

- $T_0(x) = \frac{1}{x+2}$ and $T_1(x) = \frac{1}{x+7}$ and
- weights (p, 1 p) where 0 .

with stationary measure μ .

Let $f(x) = \sin(2\pi x)$ and we can consider $p \mapsto \int f d\mu$.

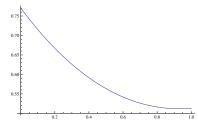


Figure: A plot of $\int f d\mu$ against 0

Two questions Some plots of examples The C^{k} case The C^{ω} case

Varying the contractions (non-linear example)

Let us consider

- $T_0(x) = \frac{1}{x+2}$ and $T_1(x) = \frac{1}{x+c}$ (with 3 < c < 10) and
- weights $(\frac{1}{2}, \frac{1}{2})$.

with stationary measure μ .

Let
$$f(x) = \sin(2\pi x)$$
 and we can consider $p \mapsto \int f d\mu$.

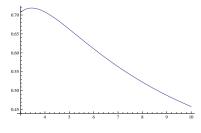


Figure: A plot of $\int f d\mu$ against 3 < c < 10

Two questions Some plots of examples The C^k case The C^{ω} case

Some results : Italo Cipriano et moi

We can consider the case of C^k weights and contractions (with $k \ge 3$).

Theorem (Change of Weights)

Consider C^k perturbations

$$(\epsilon,\epsilon)
i \lambda \mapsto p_0^{(\lambda)}, p_1^{(\lambda)} \in C^k([0,1],\mathbb{R}).$$

Then for any $f \in C^{\infty}([0,1],\mathbb{R})$ we have that $(-\epsilon,\epsilon) \ni \lambda \mapsto \int f d\mu_{\lambda} \in \mathbb{R}$ is C^{k} .

Here we can view $C^k([0,1],\mathbb{R})$ as a Banach space and " C^k perturbation" means that for any $L \in C^k([0,1],\mathbb{R})^*$ the composition $(-\epsilon,\epsilon) \ni \lambda \mapsto L(p_i^{(\lambda)}) \in \mathbb{R}$ is C^k .

Theorem (Change of contractions)

Consider C^k perturbations

$$(-\epsilon,\epsilon) \ni \lambda \mapsto T_0^{(\lambda)}, T_1^{(\lambda)} \in C^k([0,1],[0,1]).$$

Then for any $f \in C^{\infty}([0,1],\mathbb{R})$ we have that $(-\epsilon,\epsilon) \ni \lambda \mapsto \int f d\mu_{\lambda} \in \mathbb{R}$ is C^{k-2} .

Here we can view $C^k([0,1],[0,1]) \subset C^k([0,1],\mathbb{R})$ as a Banach manifold - which locally is modelled by a Banach space.

Two questions Some plots of examples The C^{K} case The C^{ω} case

Italo Cipriano et moi

Figure: (a) Italo Cipriano on Monday, sitting beneath "DNA Quilt"; (b) M.P. on Thursday, standing in front of a Menger sponge.

Two questions Some plots of examples The C^{k} case The C^{ω} case

Some of the proof

The proof follows a natural course (if you are perverse enough to use a thermodynamic approach).

• We can use symbolic dynamics to code the limit set by a sequence space $\Sigma = \{0,1\}^{\mathbb{Z}^+}$ using the (α -Hölder) map:

$$\pi^{(\lambda)}: \Sigma \to [0,1]$$

$$\pi^{(\lambda)}\left((x_n)_{n=0}^{\infty}\right) = \lim_{n \to +\infty} T_{x_0}^{(\lambda)} T_{x_1}^{(\lambda)} \cdots T_{x_n}^{(\lambda)}(0)$$

2 Given $f:[0,1] \to \mathbb{R}$ we can rewrite

$$\int_{[0,1]} f d\mu_{\lambda} = \int_{\Sigma} f \circ \pi^{(\lambda)} d\nu_{\lambda}$$

where ν_{λ} is the Gibbs measure associated to $\log |T'_{x_0}(\pi^{(\lambda)}(x_n))|$.

We can show smoothness of the map λ → π^(λ) ∈ C^α(Σ, ℝ) and deduce smoothness of λ → log | T'_{x0}(π^(λ)((x_n)[∞]_{n=0}))| and λ → ν_λ. (The loss of two derivatives comes from properties of the "composition" map).

Introduction Two of Limit sets Some Monge transportation problem The C Dependence of the stationary measure The C

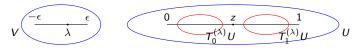
Two questions Some plots of example The C^k case The C^{ω} case

A particularly simple setting: Analytic functions

Let $p_0^{(\lambda)}, p_1^{(\lambda)} : [0,1] \to (0,1)$ and $\mathcal{T}_0^{(\lambda)}, \mathcal{T}_1^{(\lambda)} : [0,1] \to [0,1]$ be C^{ω} for $\lambda \in (-\epsilon, \epsilon)$, i.e., there are neighbourhoods: $[0,1] \subset U \subset \mathbb{C}$; and $(-\epsilon, \epsilon) \subset V \subset \mathbb{C}$, such that

$$egin{aligned} U imes V
i & (z,\lambda)\mapsto p_0^{(\lambda)}(z), p_1^{(\lambda)}(z)\in\mathbb{C} ext{ and } \ U imes V
i & (z,\lambda)\mapsto T_0^{(\lambda)}(z), T_1^{(\lambda)}(z)\in\mathbb{C} \end{aligned}$$

are analytic.



Theorem

For any C^ω function $f:[0,1] \to \mathbb{R}$ we have that

$$(-\epsilon,\epsilon) \ni \lambda \mapsto \int f d\mu_{\lambda}$$

is C^{ω} , i.e., there is an open neighbourhood $(-\epsilon, \epsilon) \subset V' \subset \mathbb{C}$ such that $V' \ni \lambda \mapsto \int f d\mu_{\lambda} \in \mathbb{C}$ is analytic.

Two questions Some plots of examples The C^{k} case **The** C^{ω} case

Most of one proof: Ingredients

We can formally define a function ("zeta function")

$$d(z,\lambda,u) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{|\underline{i}|=n} (T_{\underline{i}}^{(\lambda)})'(x_{\underline{i}}^{(\lambda)}) \exp\left(uf^n(x_{\underline{i}}^{(\lambda)})\right)\right)$$

where:

•
$$T_{\underline{i}}^{(\lambda)} := T_{i_0}^{(\lambda)} \circ \cdots \circ T_{i_{n-1}}^{(\lambda)}$$
 for $\underline{i} = (i_0, \cdots, i_{n-1})$ and $|\underline{i}| = n$;

•
$$T_{\underline{i}}^{(\lambda)}(x_{\underline{i}}^{(\lambda)}) = x_{\underline{i}}^{(\lambda)}$$
 is its fixed point; and
• $f^n(x_{\underline{i}}^{(\lambda)}) := \sum_{k=0}^{n-1} f(x_{\sigma^k \underline{i}}^{(\lambda)})$ where $\sigma^k \underline{i} = (i_k, i_{k+1} \cdots, i_{n-1}, i_0, \cdots, i_{k-1})$.

Lemma (Standard stuff)

((z, λ, u) is analytic in each variable for |z| sufficiently small.

Thus to prove analyticity of $\lambda \mapsto \int f d\mu_{\lambda}$ it suffices to show analyticity of $d(z, \lambda, u)$ in a neighbourhood of (1, 0, 0).

Most of the proof: Analyticity of $d(z, \lambda, u)$

However, we can establish this analyticity of $d(z, \lambda, u)$ by:

- showing analyticity of the contributions from each of the fixed points;
- **2** bundling the individual analyticity together in the complex function.

More precisely,

• By the implicit function theorem, for each string \underline{i} there exists a neighbourhood $(-\epsilon,\epsilon) \subset V_{\underline{i}} \subset \mathbb{C}$ such that the fixed point

$$V_{\underline{i}} \ni \lambda \mapsto x_{\underline{i}}^{(\lambda)}$$

is analytic on a complex neighbourhood $V_{\underline{i}} \supset (-\epsilon, \epsilon)$.

• The intersection $V' := \cap_{\underline{i}} V_{\underline{i}} \subset \mathbb{C}$, is still a neighbourhood of $(-\epsilon, \epsilon)$ in \mathbb{C} .

(This is an exercise using the fact that the $T_i^{(\lambda)} : [0,1] \to [0,1]$ are contracting).

Thus we can deduce that $d(z, \lambda, u)$ is analytic in a neighbourhood of (1, 0, 0), as required.

Alternatively, we could use a transfer operator and perturbation theory approach - but the above avoids infinite dimensional spaces

Final question - just so that I don't end on a proof :

Assume that we are given for $\lambda \in [a, b]$:

- a C^∞ family of contractions $T_0^{(\lambda)},\cdots,T_{k-1}^{(\lambda)}:[0,1] o [0,1];$ and
- a C^{∞} family of probability weights $p_0^{(\lambda)}, \cdots, p_{k-1}^{(\lambda)} : [0,1] \to (0,1).$

Let μ_{λ} be the associated stationary measure, i.e., $\sum_{i=0}^{k-1} p_i^{(\lambda)}(T_i^{(\lambda)}\mu_{\lambda}) = \mu_{\lambda}$.

Question

How regular is the function

$$[a,b]
i \lambda \mapsto d(\mu^{(\lambda)},\mu^{(a)}) := \sup\left\{ \left| \int \mathit{fd}\mu^{(\lambda)} - \int \mathit{fd}\mu^{(a)}
ight| \, : \, \|\mathit{f}\|_{\mathit{Lip}} \leq 1
ight\}?$$

Which functions maximise the supremum?

Two questions Some plots of examples The C^k case **The** C^{ω} case

Final slide

Good luck to Jon and congratulations

to Manchester on appointing him.