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Overview

We can consider a limit set Λ for a pair of contractions T0 : [0, 1]→ [0, 1] and
T1 : [0, 1]→ [0, 1] on the line.

Question

How does the set Λ change as T0,T1 change?

We can consider a stationary probability measure µ for weights p0, p1 which is
supported on the closed set Λ .

Question

How does the measure µ change as T0,T1 and p0, p1 change?

Usually the dependence on Ti is more subtle (interesting?) than the dependence
on pi .

Generally we need more smoothness in the dependence of pi and Ti then we can
expect from the µ.

We will make a detour in the exposition to take in the scenery (e.g., the Monge
Optimization Problem).
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Limits sets of contractions

Let us consider a specific setting of the unit interval [0, 1] and two C∞ contractions

T0 : [0, 1]→ [0, 1] and T1 : [0, 1]→ [0, 1]

Often we will ask (for convenience?) for disjoint images (i.e., T0[0, 1] ∩ T1[0, 1] = ∅).

0 1

0 1

T0(0) T0(1) T1(0) T1(1)

T0 T1

Figure: Two contractions on the unit interval
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The limit set

Definition

The limit set Λ = Λ(T0,T1) is the smallest closed set such that T0Λ ∪ T1Λ = Λ

Equivalently, and perhaps more intuitively, we can define the set by

Λ =
n

lim
n→∞

Ti0 · · ·Tin (0) : i0, · · · , in ∈ {0, 1}
o

1 The set Λ is a Cantor set (when T0[0, 1] ∩ T1[0, 1] = ∅).

2 The construction of Λ is often called an “iterated function scheme” or “cookie
cutter” (but as seldom as possible by me).

When you get bored try counting the number of mistakes in these slides. First to spot
100 should shout “Bingo”
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Example: middle third Cantor set

We can let

T0(x) =
x

3
and T1(x) =

x

3
+

2

3

then Λ is the usual middle third Cantor set, i.e.,

Λ =

( ∞X
n=0

in

3n+1
: i0, i1, i2, i3, · · · ∈ {0, 2}

)
.

0 1

0 1
1
3

10

2
3

1
3

2
3

1
9

2
9

8
9

7
9

Figure: The usual construction of the middle third Cantor set
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More examples

1 More generally, for any 0 < λ < 1
2

we can let

T0(x) = λx and T1(x) = λx + (1− λ)

then Λ is the usual middle (1− 2λ)-Cantor set.

(This is a “self-similar” set, since the contractions for T0,T1 are the same).

2 Even more generally, for any 0 < λ1, λ2 < 1 with λ1 + λ2 = 1 we can let

T0(x) = λ1x and T1(x) = λ2x + (1− λ2)

and again Λ is a limit set.

(The contractions for T0,T1 may now be different making the Cantor set seem
lopsided).

3 For a nonlinear example we can consider

T0(x) =
1

x + 2
and T1(x) =

1

x + 7

then the limit set Λ consist of those 0 < x < 1 whose continued fraction
expansions consist only of digits 2 and 7.

6 / 29



Introduction
Limit sets

Monge transportation problem
Dependence of the stationary measure

Limit sets
Examples
Stationary measures
Examples

Stationary measures

We next want to introduce probability measures supported on the limit set Λ.

The choice of measure will be determined by C∞ weight functions
p0, p1 : [0, 1]→ (0, 1) such that p0(x) + p1(x) = 1.

Definition

We say that a probability µ is a stationary measure if for any f ∈ C 0([0, 1],R) we have
that Z

f (x)dµ(x) =

Z
(p0(x)f (T0x) + p1(x)f (T1x)) dµ(x).

Equivalently, we can also construct µ by:Z
fdµ = lim

n→+∞

X
i0,··· ,in−1∈{0,1}

pi0 (0)pi1 (Ti0 0) · · · pin−1
(Ti0 · · ·Tin−2

0)f (Ti0 · · ·Tin−1
0)

(i.e., as a limit of suitably weighted measures on 2n image points).
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(1/2, 1/2)-Bernoulli measures on middle third Cantor set

If we let T0 = x
3

, T1(x) = x
3

+ 1
3

and p0 = p1 = 1
2

then the measure is the natural
(1/2, 1/2)-Bernoulli measure.

0 1

0 1
1
3
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1
4

1
4

1
4

In particular, µ

»
0,

1

3

–
= µ

»
2

3
, 1

–
=

1

2
,

µ

»
0,

1

9

–
= µ

»
2

9
,

1

3

–
= µ

»
2

3
,

7

9

–
= µ

»
8

9
, 1

–
=

1

4
,

and in general, µ

"
N−1X
n=0

in

3n+1
,

NX
n=1

in

3n+1
+

1

2N

#
=

1

3N
for i0, · · · , iN−1 ∈ {0, 2}.
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(p, 1− p)-Bernoulli measures

If we let p0 = p and p1 = 1− p then the measure is the natural (p, 1− p)-Bernoulli
measure.
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p 1− p

p2 p(1− p) p(1− p) (1− p)2

Thus µ
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3
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= p, µ

»
2

3
, 1

–
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1
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–
= p2, µ

»
2
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3

–
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»
2

3
,

7

9

–
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9
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–
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,
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n=0

in

3n+1
+

1
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#
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„
1

p
− 1

«in/2

for i0, · · · , iN−1 ∈ {0, 2}.
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Monge Transportation problem (1781)

Assume we have a number of mines producing
iron ore and a number of factories which
need to be supplied.Assume that the mine at
x ∈ [0, 1]d supplies the factory at y ∈ [0, 1]d and
that the cost of transporting the ore from mine
to factory is proportional to the distance |x − y |.
The problem is to minimise the total
cost over different choices of pairings x to y .

We can approximate the distribution
of mines by a probability µ and the distribution
of factories by a probability ν. When possible,
we want to find a map T : [0, 1]d → [0, 1]d

(i.e., T (x) = y) which minimises

inf

Z
X
|x − T (x)|dµ(x) : T∗µ = ν

ff
.

Example (Trivial example, d = 1)

If µ, ν have no atoms and are supported on [0, 1] there is a solution

T = F−1
ν ◦ Fµ : [0, 1]→ [0, 1] where Fµ(x) = µ([0, x]) and Fν(x) = ν([0, x]) for

0 < x < 1.
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Gaspard Monge (1746-1818)

Gaspard Monge had a remarkably successful career under three rather different types
of government in France.

A prodigy, he was made a professor at the age of 22 at the École Royale du Génie
at Mézières in pre-revolutionary France. He invented descriptive geometry
(representing three dimensional figures in two dimensions, for example) but the
theory was surpressed as a military secret for many years.

The son of a wine merchant, he was a keen supporter of the French Revolution
and was Minister for the Navy. In this post he was kind to Napoleon, then a
young officer. During the Terror he was denounced, but escaped execution.

Subsequently, he became one of Napoleon’s closest friends during the Emperor’s
reign, and Director of the École Polytechnique.

His name is one of the 72 names of scientists inscribed on the Eiffel tower
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The optimisation problem

A more general formulation due to Kantorovich is to minimise

d(µ, ν) := inf

Z
X×X

|x − y |dm(x , y) : π1m = µ, π2m = ν

ff
where the infimum is over probability measures m on X × X projecting to ν and µ.

A× BA

B

π2

m

π1

µ

ν

i.e., π1m(A) = m(A× X ) and π2m(B) = m(X × B).
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Kantorovich-Wasserstein metric

Kantorovich’s work (from 1942) lead to the Nobel Prize in Economics in 1975.

An equivalent definition using Lipschitz functions is in a paper of Kantorovich and
Rubinshtein from 1958.

d(µ, ν) := sup

˛̨̨̨Z
fdµ−

Z
fdν

˛̨̨̨
: ‖f ‖Lip ≤ 1

ff
where ‖f ‖Lip = supx 6=y

|f (x)−f (y)|
|x−y| .

The name ”Wasserstein distance” was coined by Dobrushin in 1970, after the Russian
mathematician Leonid Wasserstein who re-discovered the concept in 1969. A vigorous
defence of Kantorovich’s contribution appears in a 2005 article of his friend Vershik.

I once collected Dobrushin (who was a big mathematician, in all senses of the word)
from Coventy train station in a Ford Fiesta (which was a smallish car). The same year
I also collected Vershik from the same station in the same car.
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Jon’s paper on the Wasserstein-Kantorovich metric

While at Warwick, Jon wrote a short paper which computed explicitly the
Wasserstein-Kantorovich metric for very special examples of stationary measures.

First and second moments for self-similar couplings and

Wasserstein distances

Jonathan M. Fraser

Mathematics Institute, Zeeman Building,
University of Warwick, Coventry, CV4 7AL, UK

e-mail: jon.fraser32@gmail.com

January 29, 2014

Abstract

We study aspects of the Wasserstein distance in the context of self-similar measures. Computing
this distance between two measures involves minimising certain moment integrals over the space
of couplings, which are measures on the product space with the original measures as prescribed
marginals. We focus our attention on self-similar measures associated to equicontractive iterated
function systems satisfying the open set condition and consisting of two maps on the unit interval.
We are particularly interested in understanding the restricted family of self-similar couplings and
our main achievement is the explicit computation of the 1st and 2nd moment integrals for such
couplings. We show that this family is enough to yield an explicit formula for the 1st Wasserstein
distance and provide non-trivial upper and lower bounds for the 2nd Wasserstein distance.

Mathematics Subject Classification 2010: Primary: 28A80, 28A33, 60B05. Secondary: 28A78.

Key words and phrases: Wasserstein metric, self-similar measure, self-similar coupling.

1 Introduction

The Wasserstein metric is widely used as an informative and computable distance function between
mass distributions. In computer science it is commonly referred to as the ‘earth mover’s distance’ and is
a measure of the ‘work’ required to change one distribution into the other. For discrete distributions on
finite sets one can develop e�cient algorithms to determine the distance, but in the non-discrete setting
calculations can be far from trivial and involve minimising certain moment integrals over the space
of couplings, which are measures on the product space with the original measures as prescribed marginals.

In this paper we study the 1st and 2nd moment integrals for self-similar couplings of pairs of
self-similar measures arising from equicontractive iterated function systems satisfying the open set
condition (OSC) and consisting of two maps on the unit interval. Given two such measures, the family of
self-similar couplings is a 1-parameter family and we are able to give an explicit formula for the 1st and
2nd moments for all measures in this family in terms of this parameter and the defining parameters of the
original measures. This gives natural upper bounds on the 1st and 2nd Wasserstein distances between
the original measures and leads us to the following natural questions: ‘Can the Wasserstein distances be
realised by self-similar couplings?’ and ‘how do the 1st and 2nd moment integrals depend on the defining
parameters?’ In the case of the 1st distance, we use the Kantorovich-Rubinstein duality theorem, which
involves maximising the integral of 1-Lipschitz test functions with respect to the di↵erence of the two
measures, to prove that self-similar couplings are indeed su�cient. We thus derive an explicit formula
for the 1st Wasserstein distance in terms of the di↵erent probability vectors, the contraction parameter,
and the translation vectors and, moreover, can exhibit an explicit coupling which realises the distance.
Once we have the formula for the 1st Wasserstein distance we are able to make the following peculiar
observation. If the translation vectors are chosen such that the end points of the unit interval are in the
support of the measure (i.e. the support is the middle (1 � 2c) Cantor set), then the 1st Wasserstein
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Figure: (a) Jon relaxing with a good book; (b) Another good read.
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Jon’s Example

We can consider the Lipschitz function f : [0, 1]→ R defined by f (x) = λx with
−1 ≤ λ ≤ 1. One sees that ‖f ‖Lip = |λ| ≤ 1.

Let us consider two stationary measures:

1 T0(x) = cx + t0 with (p, 1− p)-Bernoulli stationary measure µp,t0 , and

2 T1(x) = cx + t1 with (q, 1− q)-Bernoulli stationary measure µq,t1 .

Theorem (J. Fraser, Proposition 2.5)Z
f (x)dµp,t0 (x)−

Z
f (x)dµq,t1 (x) =

λ(p − q)(t1 − t2)

1− c

In particular, we immediately see that

(p, t) 7→
Z

f (x)dµp,t (x)

is real analytic.

So at least in this nice and explicit case we see that the dependence of the integrals of
stationary measures has an analytic dependence.
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Jon’s Example

In fact in this example it is possible to explicitly compute the Kantorovich-Wasserstein
distance between the two stationary measures.

We recall that

d(µp,t0 , µq,t1 ) = sup

˛̨̨̨Z
f (x)dµp,t0 (x)−

Z
f (x)dµq,t1 (x)

˛̨̨̨
: ‖f ‖Lip ≤ 1

ff
.

Theorem (J. Fraser, Corollary 2.6)

One can show

d(µp,t0 , µq,t1 ) =
λ|p − q|(t1 − t2)

1− c
.

Moreover, the supremum in the definition of the metric is realised by f (x) = x or
f (x) = −x.
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Question: How does the measure change in general?

We can consider the regularity of the dependence of the measures in the general
setting. Assume that T0,T1 : [0, 1]→ [0, 1] and p0, p1 : [0, 1]→ [0, 1] are all C k .

Assume first that we make a C k perturbation in the weights.

Question

How does the set µ change as p0, p1 change? More precisely, if f : [0, 1]→ R is C∞

then what is the dependence of
R

fdµ?

Assume next that we make a C k perturbation in the contractions.

Question

How does the measure µ change as T0,T1 change? More precisely, if f : [0, 1]→ R is
C∞ then what is the dependence of

R
fdµ?
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Varying the weights (linear example)

Let us consider

T0(x) = 1
4

x and T1(x) = 1
2

x + 1
2

and

weights (p, 1− p) where 0 < p < 1.

with stationary measure µ.

Let f (x) = sin(2πx) and we can consider p 7→
R

fdµ.

0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

0.05

0.10

Figure: A plot of
R

fdµ against 0 < p < 1
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Varying the contractions (linear example)

Let us consider

T0(x) = cx (with 0 < c < 1
2

) and T1(x) = 1
2

x + 1
2

and

weights ( 1
2
, 1

2
).

with stationary measure µ. Let f (x) = sin(2πx) and we can consider p 7→
R

fdµ.

0.1 0.2 0.3 0.4 0.5

-0.15

-0.10

-0.05

Figure: A plot of
R

fdµ against 0 < c < 1
2
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Varying the weights (non-linear example)

Let us consider

T0(x) = 1
x+2

and T1(x) = 1
x+7

and

weights (p, 1− p) where 0 < p < 1.

with stationary measure µ.

Let f (x) = sin(2πx) and we can consider p 7→
R

fdµ.

0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75

Figure: A plot of
R

fdµ against 0 < p < 1

20 / 29



Introduction
Limit sets

Monge transportation problem
Dependence of the stationary measure

Two questions
Some plots of examples
The Ck case
The Cω case

Varying the contractions (non-linear example)

Let us consider

T0(x) = 1
x+2

and T1(x) = 1
x+c

(with 3 < c < 10) and

weights ( 1
2
, 1

2
).

with stationary measure µ.

Let f (x) = sin(2πx) and we can consider p 7→
R

fdµ.

4 5 6 7 8 9 10

0.45

0.50

0.55

0.60

0.65

0.70

Figure: A plot of
R

fdµ against 3 < c < 10
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Some results : Italo Cipriano et moi

We can consider the case of C k weights and contractions (with k ≥ 3).

Theorem (Change of Weights)

Consider C k perturbations

(ε, ε) 3 λ 7→ p
(λ)
0 , p

(λ)
1 ∈ C k ([0, 1],R).

Then for any f ∈ C∞([0, 1],R) we have that (−ε, ε) 3 λ 7→
R

fdµλ ∈ R is C k .

Here we can view C k ([0, 1],R) as a Banach space and “C k perturbation” means that

for any L ∈ C k ([0, 1],R)∗ the composition (−ε, ε) 3 λ 7→ L(p
(λ)
i ) ∈ R is C k .

Theorem (Change of contractions)

Consider C k perturbations

(−ε, ε) 3 λ 7→ T
(λ)
0 ,T

(λ)
1 ∈ C k ([0, 1], [0, 1]).

Then for any f ∈ C∞([0, 1],R) we have that (−ε, ε) 3 λ 7→
R

fdµλ ∈ R is C k−2.

Here we can view C k ([0, 1], [0, 1]) ⊂ C k ([0, 1],R) as a Banach manifold - which
locally is modelled by a Banach space.
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Italo Cipriano et moi

Figure: (a) Italo Cipriano on Monday, sitting beneath “DNA Quilt”; (b) M.P. on Thursday,
standing in front of a Menger sponge.
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Some of the proof

The proof follows a natural course (if you are perverse enough to use a
thermodynamic approach).

1 We can use symbolic dynamics to code the limit set by a sequence space

Σ = {0, 1}Z+
using the (α-Hölder) map:

π(λ) : Σ→ [0, 1]

π(λ) ((xn)∞n=0) = lim
n→+∞

T
(λ)
x0

T
(λ)
x1
· · ·T (λ)

xn (0)

2 Given f : [0, 1]→ R we can rewriteZ
[0,1]

fdµλ =

Z
Σ

f ◦ π(λ)dνλ

where νλ is the Gibbs measure associated to log |T ′x0
(π(λ)(xn))|.

3 We can show smoothness of the map λ 7→ π(λ) ∈ Cα(Σ,R) and deduce
smoothness of λ 7→ log |T ′x0

(π(λ)
`
(xn)∞n=0

´
)| and λ 7→ νλ.

(The loss of two derivatives comes from properties of the “composition” map).
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A particularly simple setting: Analytic functions

Let p
(λ)
0 , p

(λ)
1 : [0, 1]→ (0, 1) and T

(λ)
0 ,T

(λ)
1 : [0, 1]→ [0, 1] be Cω for λ ∈ (−ε, ε),

i.e., there are neighbourhoods: [0, 1] ⊂ U ⊂ C; and (−ε, ε) ⊂ V ⊂ C, such that

U × V 3 (z, λ) 7→ p
(λ)
0 (z), p

(λ)
1 (z) ∈ C and

U × V 3 (z, λ) 7→ T
(λ)
0 (z),T

(λ)
1 (z) ∈ C

are analytic.

−ε ε

λ

0 1

V UT
(λ)
0 U T

(λ)
1 U

z

Theorem

For any Cω function f : [0, 1]→ R we have that

(−ε, ε) 3 λ 7→
Z

fdµλ

is Cω , i.e., there is an open neighbourhood (−ε, ε) ⊂ V ′ ⊂ C such that
V ′ 3 λ 7→

R
fdµλ ∈ C is analytic.
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Most of one proof: Ingredients

We can formally define a function (“zeta function”)

d(z, λ, u) = exp

0@− ∞X
n=1

zn

n

X
|i|=n

(T
(λ)
i )′(x

(λ)
i ) exp

“
uf n(x

(λ)
i )

”1A
where:

T
(λ)
i := T

(λ)
i0
◦ · · · ◦ T

(λ)
in−1

for i = (i0, · · · , in−1) and |i | = n;

T
(λ)
i (x

(λ)
i ) = x

(λ)
i is its fixed point; and

f n(x
(λ)
i ) :=

Pn−1
k=0 f (x

(λ)

σk i
) where σk i = (ik , ik+1 · · · , in−1, i0, · · · , ik−1).

Lemma (Standard stuff)

1 d(z, λ, u) is analytic in each variable for |z| sufficiently small.

2 Each (z, u) 7→ d(z, λ, u) has an analytic extension to a neighbourhood of (1, 0).

3
R

fdµλ = ∂d(1,λ,u)
∂u

|u=0/
∂d(z,λ,0)

∂z
|z=1.

Thus to prove analyticity of λ 7→
R

fdµλ it suffices to show analyticity of d(z, λ, u) in
a neighbourhood of (1, 0, 0).
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Most of the proof: Analyticity of d(z , λ, u)

However, we can establish this analyticity of d(z, λ, u) by:

1 showing analyticity of the contributions from each of the fixed points;

2 bundling the individual analyticity together in the complex function.

More precisely,

By the implicit function theorem, for each string i there exists a neighbourhood
(−ε, ε) ⊂ Vi ⊂ C such that the fixed point

Vi 3 λ 7→ x
(λ)
i

is analytic on a complex neighbourhood Vi ⊃ (−ε, ε).

The intersection V ′ := ∩i Vi ⊂ C, is still a neighbourhood of (−ε, ε) in C.

(This is an exercise using the fact that the T
(λ)
i : [0, 1]→ [0, 1] are contracting).

Thus we can deduce that d(z, λ, u) is analytic in a neighbourhood of (1, 0, 0), as
required.

Alternatively, we could use a transfer operator and perturbation theory approach - but
the above avoids infinite dimensional spaces
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Final question - just so that I don’t end on a proof :(

Assume that we are given for λ ∈ [a, b]:

a C∞ family of contractions T
(λ)
0 , · · · ,T (λ)

k−1 : [0, 1]→ [0, 1]; and

a C∞ family of probability weights p
(λ)
0 , · · · , p(λ)

k−1 : [0, 1]→ (0, 1).

Let µλ be the associated stationary measure, i.e.,
Pk−1

i=0 p
(λ)
i (T

(λ)
i µλ) = µλ.

Question

How regular is the function

[a, b] 3 λ 7→ d(µ(λ), µ(a)) := sup

˛̨̨̨Z
fdµ(λ) −

Z
fdµ(a)

˛̨̨̨
: ‖f ‖Lip ≤ 1

ff
?

Which functions maximise the supremum?
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Final slide

Good luck to Jon and congratulations

to Manchester on appointing him.
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