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Dimension

There are many different ways to define the dimension of a fractal.

Hausdorff, packing, upper and lower box, Assouad, lower, quasi-Assouad,
modified box, topological, Fourier, . . .

Many of these notions characterise how a fractal fills up space on small
scales - but there are many ways to do this!

For simplicity, I will focus on dimH, dimB, dimA (dare I say, the three most
popular?)
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Box and Hausdorff dimension

More formally, for bounded F ⊆ Rd , . . .

dimB F = lim sup
r→0

logNr (F )

− log r

where Nr (F ) is the minimum number of sets of diameter r required to cover F . (I
am going to assume for simplicity that this limit actually exists).

dimH F = inf

{
α > 0 : for all ε > 0 there exists a cover {Ui}

such that
∑
i

|Ui |α < ε

}
.
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Assouad dimension

dimA F = inf

{
α > 0 : there exists a constant C > 0 such that,

for all 0 < r < R and x ∈ F we have

Nr

(
B(x ,R) ∩ F

)
6 C

(
R

r

)α }
.

dimA F = inf

{
α > 0 : there exists C > 0 such that, for all 0 < r < R and x ∈ F , Nr

(
B(x, R) ∩ F

)
6 C

(
R

r

)α
}
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Dimension theory

One of the joys of dimension theory is in understanding how these different
notions of dimension relate to each other and how they behave in different
settings.

dimH F 6 dimB F 6 dimA F

‘Assouad dimension is the greatest of all dimensions’

Furstenberg, Mackay-Tyson, Bishop-Peres, Käenmäki-Ojala-Rossi:

dimA F = sup{dimH E : E is a microset of F}

‘Assouad dimension can be recovered at the level of tangents’

If F is Ahlfors regular then dimH F = dimB F = dimA F .
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Examples - countable sets

Fix p > 0, and F = {n−p : n ∈ N}.

dimH F = 0 dimB F =
1

1 + p
dimA F = 1

It should be clear that [0, 1] is a microset (zoom in at 0).
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Examples - self-affine sets

Divide [0, 1]2 into an m × n grid, where n > m and select a collection of N
subrectangles across N0 columns, with Ni in ith column

dimH F =
log
∑

i N
logm/ log n
i

logm
(Bedford-McMullen 1985)

dimB F =
logN0

logm
+

log(N/N0)

log n
(Bedford-McMullen 1985)

dimA F =
logN0

logm
+ max

i

logNi

log n
(Mackay 2011)
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Examples - Kleinian limit sets

Let Γ be a geometrically finite Kleinian group acting on d-dimensional hyperbolic
space with limit set F . Write δ(Γ) for the Poincaré exponent and k(Γ) for the
maximal rank of a free Abelian group in the stabiliser of a parabolic fixed point.

dimH F = δ(Γ) (Patterson 1976, Sullivan 1984)

dimB F = δ(Γ) (Stratmann-Urbański 1996, Bishop-Jones 1997)

dimA F = max{δ(Γ), k(Γ)} (F 2017)
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dimB F = δ(Γ) (Stratmann-Urbański 1996, Bishop-Jones 1997)

dimA F = max{δ(Γ), k(Γ)} (F 2017)

Jonathan M. Fraser Interpolating between dimensions



Examples - self-similar sets in R
Let F ⊂ R be a (non-trivial) self-similar set.

dimH F = dimB F

If WSC is satisfied:

dimA F = dimH F = dimB F (F-Henderson-Olson-Robinson 2015)

If WSC fails (e.g., if logα/ log β /∈ Q above):

dimA F = 1 (F-Henderson-Olson-Robinson 2015)
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Towards interpolation

Given dimensions dim and Dim which generally satisfy dimF 6 DimF we wish
to understand the gap between the dimensions by introducing an interpolation
function d : [0, 1]→ R+ which (ideally) satisfies:

d(0) = dimF

d(1) = DimF

dimF 6 d(θ) 6 DimF , θ ∈ (0, 1)

d(θ) is continuous in θ

the definition of d(θ) is ‘natural’

d(θ) gives rise to a ‘rich theory’

Motivation:

yields better understanding of dim and Dim

allows us to witness one type of behaviour changing into another

provides more information

gives us a (large) new set of questions

good fun
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Example 1: The Assouad spectrum

Recall

dimA F = inf

{
α > 0 : there exists a constant C > 0 such that,

for all 0 < r < R and x ∈ F we have

Nr

(
B(x ,R) ∩ F

)
6 C

(
R

r

)α }
.

F-Yu 2017: Given, θ ∈ (0, 1) we fix the relationship between r and R, by setting
R = rθ . . .

dimθ
A F = inf

{
α > 0 : there exists a constant C > 0 such that,

for all 0 < r < 1 and x ∈ F we have

Nr

(
B(x , rθ) ∩ F

)
6 C

(
rθ

r

)α }
.
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Example 1: The Assouad spectrum

F-Yu 2017: dimθ
A F is

continuous in θ

Lipschitz on any closed subinterval of (0, 1)

not necessarily monotonic (but often is)

Moreover,

dimB F 6 dimθ
A F 6 min

{
dimB F

1− θ
, dimA F

}
and so dimθ

A F → dimB F as θ → 0, but dimθ
A F may not approach dimA F as

θ → 1.

F-Hare-Hare-Troscheit-Yu 2018: dimθ
A F → dimqA F as θ → 1.
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Example 2: intermediate dimensions

Recall

dimH F = inf

{
α > 0 : for all ε > 0 there exists a cover {Ui}

such that
∑
i

|Ui |α < ε

}
.

Falconer-F-Kempton 2018: Given θ ∈ (0, 1), we restrict the range of available
covers by insisting that |Ui | 6 |Uj |θ for all i , j

dimθ F = inf

{
α > 0 : for all ε > 0 there exists a cover {Ui}

with |Ui | 6 |Uj |θ for all i , j such that
∑
i

|Ui |α < ε

}
.
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Example 2: intermediate dimensions

Falconer-F-Kempton 2018: dimθ F

is continuous in θ

is monotonically increasing

is bounded between the Hausdorff and box dimension, that is

dimH F 6 dimθ F 6 dimB F

satisfies appropriate versions of the mass distribution principle and
Frostman’s lemma.

Moreover,

dimθ F > dimA F − dimA F − dimB F

θ
.

Therefore:

if dimB F = dimA F , then dimθ F = dimB F = dimA F for all θ ∈ (0, 1)

dimθ F → dimB F as θ → 1, but dimθ F may not approach dimH F as θ → 0.
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Examples - countable sets

Recall: fix p > 0, and F = {n−p : n ∈ N}.

dimH F = 0 dimB F =
1

1 + p
dimA F = 1

dimθ F =
θ

θ + p
dimθ

A F = min

{
1

(1 + p)(1− θ)
, 1

}
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Examples - self-affine carpets

F-Yu 2017: For θ ∈ (0, logm/ log n]

dimθ
A F =

dimB F − θ
(

dimA F − (dimA F − dimB F ) log n
logm

)
1− θ

and for θ ∈ [logm/ log n, 1)

dimθ
A F = dimA F .
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Further examples

F-Miao-Troscheit 2014, F-Yu 2017, Troscheit 2017: Let F ⊂ [0, 1]d be the limit
set of Mandelbrot percolation.

Almost surely, conditioned on non-extinction, for
all θ ∈ (0, 1):

dimθ
A F = dimB F < dimA F = d .

Garćıa-Hare 2017: Let F ⊆ R be a self-similar set. Then for all θ ∈ (0, 1)

dimH F = dimB F = dimθ
A F .

Question

Is this true for self-similar sets in higher dimensions?
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The future and the present

Question

Can we view each dimension as a different facet of a single object?
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