Interpolating between dimensions

Jonathan M. Fraser
The University of St Andrews, Scotland
Joint work with several people

Fractal Geometry and Stochastics VI

Dimension

- There are many different ways to define the dimension of a fractal.

Dimension

- There are many different ways to define the dimension of a fractal.
- Hausdorff, packing, upper and lower box, Assouad, lower, quasi-Assouad, modified box, topological, Fourier, ...

Dimension

- There are many different ways to define the dimension of a fractal.
- Hausdorff, packing, upper and lower box, Assouad, lower, quasi-Assouad, modified box, topological, Fourier, ...
- Many of these notions characterise how a fractal fills up space on small scales

Dimension

- There are many different ways to define the dimension of a fractal.
- Hausdorff, packing, upper and lower box, Assouad, lower, quasi-Assouad, modified box, topological, Fourier, ...
- Many of these notions characterise how a fractal fills up space on small scales - but there are many ways to do this!

Dimension

- There are many different ways to define the dimension of a fractal.
- Hausdorff, packing, upper and lower box, Assouad, lower, quasi-Assouad, modified box, topological, Fourier, ...
- Many of these notions characterise how a fractal fills up space on small scales - but there are many ways to do this!
- For simplicity, I will focus on $\operatorname{dim}_{\mathrm{H}}, \operatorname{dim}_{\mathrm{B}}, \operatorname{dim}_{\mathrm{A}}$

Dimension

- There are many different ways to define the dimension of a fractal.
- Hausdorff, packing, upper and lower box, Assouad, lower, quasi-Assouad, modified box, topological, Fourier, ...
- Many of these notions characterise how a fractal fills up space on small scales - but there are many ways to do this!
- For simplicity, I will focus on $\operatorname{dim}_{\mathrm{H}}, \operatorname{dim}_{\mathrm{B}}, \operatorname{dim}_{\mathrm{A}}$ (dare I say, the three most popular?)

Dimension

Box and Hausdorff dimension

More formally, for bounded $F \subseteq \mathbb{R}^{d}, \ldots$

Box and Hausdorff dimension

More formally, for bounded $F \subseteq \mathbb{R}^{d}, \ldots$

$$
\operatorname{dim}_{\mathrm{B}} F=\limsup _{r \rightarrow 0} \frac{\log N_{r}(F)}{-\log r}
$$

Box and Hausdorff dimension

More formally, for bounded $F \subseteq \mathbb{R}^{d}, \ldots$

$$
\operatorname{dim}_{\mathrm{B}} F=\limsup _{r \rightarrow 0} \frac{\log N_{r}(F)}{-\log r}
$$

where $N_{r}(F)$ is the minimum number of sets of diameter r required to cover F.

Box and Hausdorff dimension

More formally, for bounded $F \subseteq \mathbb{R}^{d}, \ldots$

$$
\operatorname{dim}_{\mathrm{B}} F=\limsup _{r \rightarrow 0} \frac{\log N_{r}(F)}{-\log r}
$$

where $N_{r}(F)$ is the minimum number of sets of diameter r required to cover F. (I am going to assume for simplicity that this limit actually exists).

Box and Hausdorff dimension

More formally, for bounded $F \subseteq \mathbb{R}^{d}, \ldots$

$$
\operatorname{dim}_{\mathrm{B}} F=\limsup _{r \rightarrow 0} \frac{\log N_{r}(F)}{-\log r}
$$

where $N_{r}(F)$ is the minimum number of sets of diameter r required to cover F. (I am going to assume for simplicity that this limit actually exists).

$$
\begin{array}{r}
\operatorname{dim}_{H} F=\inf \left\{\alpha>0: \text { for all } \varepsilon>0 \text { there exists a cover }\left\{U_{i}\right\}\right. \\
\text { such that } \left.\sum_{i}\left|U_{i}\right|^{\alpha}<\varepsilon\right\} .
\end{array}
$$

Assouad dimension

$$
\begin{array}{r}
\operatorname{dim}_{\mathrm{A}} F=\inf \{\alpha>0: \text { there exists a constant } C>0 \text { such that, } \\
\text { for all } 0<r<R \text { and } x \in F \text { we have } \\
\left.N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}
\end{array}
$$

Assouad dimension

$$
\begin{aligned}
& \operatorname{dim}_{\mathrm{A}} F=\inf \{\alpha>0: \text { there exists a constant } C>0 \text { such that, } \\
& \text { for all } 0<r<R \text { and } x \in F \text { we have } \\
& \left.\qquad N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}
\end{aligned}
$$

$\operatorname{dim}_{\mathrm{A}} F=\inf \left\{\alpha>0\right.$: there exists $C>0$ such that, for all $0<r<R$ and $\left.x \in F, N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}$

Assouad dimension

$$
\begin{aligned}
& \operatorname{dim}_{\mathrm{A}} F=\inf \{\alpha>0: \text { there exists a constant } C>0 \text { such that, } \\
& \text { for all } 0<r<R \text { and } x \in F \text { we have } \\
& \left.\qquad N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}
\end{aligned}
$$

$\operatorname{dim}_{\mathrm{A}} F=\inf \left\{\alpha>0\right.$: there exists $C>0$ such that, for all $0<r<R$ and $\left.x \in F, N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}$

Dimension theory

One of the joys of dimension theory is in understanding how these different notions of dimension relate to each other and how they behave in different settings.

Dimension theory

One of the joys of dimension theory is in understanding how these different notions of dimension relate to each other and how they behave in different settings.

- $\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{B} F \leqslant \operatorname{dim}_{A} F$

Dimension theory

One of the joys of dimension theory is in understanding how these different notions of dimension relate to each other and how they behave in different settings.

- $\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{B} F \leqslant \operatorname{dim}_{A} F$
'Assouad dimension is the greatest of all dimensions'

Dimension theory

One of the joys of dimension theory is in understanding how these different notions of dimension relate to each other and how they behave in different settings.

- $\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{\mathrm{B}} F \leqslant \operatorname{dim}_{\mathrm{A}} F$
'Assouad dimension is the greatest of all dimensions'
- Furstenberg, Mackay-Tyson, Bishop-Peres, Käenmäki-Ojala-Rossi:

$$
\operatorname{dim}_{\mathrm{A}} F=\sup \left\{\operatorname{dim}_{\mathrm{H}} E: E \text { is a microset of } F\right\}
$$

Dimension theory

One of the joys of dimension theory is in understanding how these different notions of dimension relate to each other and how they behave in different settings.

- $\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{B} F \leqslant \operatorname{dim}_{A} F$
'Assouad dimension is the greatest of all dimensions'
- Furstenberg, Mackay-Tyson, Bishop-Peres, Käenmäki-Ojala-Rossi:

$$
\operatorname{dim}_{\mathrm{A}} F=\sup \left\{\operatorname{dim}_{\mathrm{H}} E: E \text { is a microset of } F\right\}
$$

'Assouad dimension can be recovered at the level of tangents'

Dimension theory

One of the joys of dimension theory is in understanding how these different notions of dimension relate to each other and how they behave in different settings.

- $\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{B} F \leqslant \operatorname{dim}_{A} F$
'Assouad dimension is the greatest of all dimensions'
- Furstenberg, Mackay-Tyson, Bishop-Peres, Käenmäki-Ojala-Rossi:

$$
\operatorname{dim}_{\mathrm{A}} F=\sup \left\{\operatorname{dim}_{\mathrm{H}} E: E \text { is a microset of } F\right\}
$$

'Assouad dimension can be recovered at the level of tangents'

- If F is Ahlfors regular then $\operatorname{dim}_{\mathrm{H}} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F$.

Examples - countable sets

Fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

Examples - countable sets

Fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

$$
\operatorname{dim}_{\mathrm{H}} F=0 \quad \operatorname{dim}_{\mathrm{B}} F=\frac{1}{1+p} \quad \operatorname{dim}_{\mathrm{A}} F=1
$$

Examples - countable sets

Fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

$$
\operatorname{dim}_{\mathrm{H}} F=0 \quad \operatorname{dim}_{\mathrm{B}} F=\frac{1}{1+p} \quad \operatorname{dim}_{\mathrm{A}} F=1
$$

It should be clear that $[0,1]$ is a microset (zoom in at 0).

Examples - self-affine sets

Divide $[0,1]^{2}$ into an $m \times n$ grid, where $n>m$ and select a collection of N subrectangles across N_{0} columns, with N_{i} in i th column

Examples - self-affine sets

Divide $[0,1]^{2}$ into an $m \times n$ grid, where $n>m$ and select a collection of N subrectangles across N_{0} columns, with N_{i} in ith column

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{H}} F=\frac{\log \sum_{i} N_{i}^{\log m / \log n}}{\log m} \quad \text { (Bedford-McMullen 1985) } \\
\operatorname{dim}_{\mathrm{B}} F=\frac{\log N_{0}}{\log m}+\frac{\log \left(N / N_{0}\right)}{\log n} \quad \text { (Bedford-McMullen 1985 } \\
\operatorname{dim}_{\mathrm{A}} F=\frac{\log N_{0}}{\log m}+\max _{i} \frac{\log N_{i}}{\log n} \quad \text { (Mackay 2011) }
\end{gathered}
$$

Examples - Kleinian limit sets

Let Γ be a geometrically finite Kleinian group acting on d-dimensional hyperbolic space with limit set F. Write $\delta(\Gamma)$ for the Poincaré exponent and $k(\Gamma)$ for the maximal rank of a free Abelian group in the stabiliser of a parabolic fixed point.

Examples - Kleinian limit sets

Let Γ be a geometrically finite Kleinian group acting on d-dimensional hyperbolic space with limit set F. Write $\delta(\Gamma)$ for the Poincaré exponent and $k(\Gamma)$ for the maximal rank of a free Abelian group in the stabiliser of a parabolic fixed point.

$$
\operatorname{dim}_{H} F=\delta(\Gamma) \quad \text { (Patterson 1976, Sullivan 1984) }
$$

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{B}} F=\delta(\Gamma) \quad \text { (Stratmann-Urbański 1996, Bishop-Jones 1997) } \\
\operatorname{dim}_{\mathrm{A}} F=\max \{\delta(\Gamma), k(\Gamma)\} \quad(\mathrm{F} 2017)
\end{gathered}
$$

Examples - self-similar sets in \mathbb{R}

Let $F \subset \mathbb{R}$ be a (non-trivial) self-similar set.

Examples - self-similar sets in \mathbb{R}

Let $F \subset \mathbb{R}$ be a (non-trivial) self-similar set.

Examples - self-similar sets in \mathbb{R}

Let $F \subset \mathbb{R}$ be a (non-trivial) self-similar set.

If WSC is satisfied:

$$
\operatorname{dim}_{\mathrm{A}} F=\operatorname{dim}_{\mathrm{H}} F=\operatorname{dim}_{\mathrm{B}} F \quad \text { (F-Henderson-Olson-Robinson 2015) }
$$

If WSC fails (e.g., if $\log \alpha / \log \beta \notin \mathbb{Q}$ above):

$$
\operatorname{dim}_{\mathrm{A}} F=1 \quad(F \text {-Henderson-Olson-Robinson 2015) }
$$

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ
- the definition of $d(\theta)$ is 'natural'

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ
- the definition of $d(\theta)$ is 'natural'
- $d(\theta)$ gives rise to a 'rich theory'

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ
- the definition of $d(\theta)$ is 'natural'
- $d(\theta)$ gives rise to a 'rich theory'

Motivation:

- yields better understanding of dim and Dim

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ
- the definition of $d(\theta)$ is 'natural'
- $d(\theta)$ gives rise to a 'rich theory'

Motivation:

- yields better understanding of dim and Dim
- allows us to witness one type of behaviour changing into another

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ
- the definition of $d(\theta)$ is 'natural'
- $d(\theta)$ gives rise to a 'rich theory'

Motivation:

- yields better understanding of dim and Dim
- allows us to witness one type of behaviour changing into another
- provides more information

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ
- the definition of $d(\theta)$ is 'natural'
- $d(\theta)$ gives rise to a 'rich theory'

Motivation:

- yields better understanding of dim and Dim
- allows us to witness one type of behaviour changing into another
- provides more information
- gives us a (large) new set of questions

Towards interpolation

Given dimensions dim and Dim which generally satisfy $\operatorname{dim} F \leqslant \operatorname{Dim} F$ we wish to understand the gap between the dimensions by introducing an interpolation function $d:[0,1] \rightarrow \mathbb{R}^{+}$which (ideally) satisfies:

- $d(0)=\operatorname{dim} F$
- $d(1)=\operatorname{Dim} F$
- $\operatorname{dim} F \leqslant d(\theta) \leqslant \operatorname{Dim} F, \quad \theta \in(0,1)$
- $d(\theta)$ is continuous in θ
- the definition of $d(\theta)$ is 'natural'
- $d(\theta)$ gives rise to a 'rich theory'

Motivation:

- yields better understanding of dim and Dim
- allows us to witness one type of behaviour changing into another
- provides more information
- gives us a (large) new set of questions
- good fun

Example 1: The Assouad spectrum

Recall

$$
\begin{array}{r}
\operatorname{dim}_{\mathrm{A}} F=\inf \{\alpha>0: \quad \text { there exists a constant } C>0 \text { such that, } \\
\text { for all } 0<r<R \text { and } x \in F \text { we have } \\
\left.N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}
\end{array}
$$

Example 1: The Assouad spectrum

Recall

$$
\begin{array}{r}
\operatorname{dim}_{\mathrm{A}} F=\inf \{\alpha>0: \quad \text { there exists a constant } C>0 \text { such that, } \\
\text { for all } 0<r<R \text { and } x \in F \text { we have } \\
\left.N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\}
\end{array}
$$

F-Yu 2017: Given, $\theta \in(0,1)$ we fix the relationship between r and R, by setting $R=r^{\theta} \ldots$

Example 1: The Assouad spectrum

Recall

$$
\begin{array}{r}
\operatorname{dim}_{\mathrm{A}} F=\inf \{\alpha>0: \quad \text { there exists a constant } C>0 \text { such that, } \\
\text { for all } 0<r<R \text { and } x \in F \text { we have } \\
\left.N_{r}(B(x, R) \cap F) \leqslant C\left(\frac{R}{r}\right)^{\alpha}\right\} .
\end{array}
$$

F-Yu 2017: Given, $\theta \in(0,1)$ we fix the relationship between r and R, by setting $R=r^{\theta} \ldots$

$$
\begin{array}{r}
\operatorname{dim}_{A}^{\theta} F=\inf \{\alpha>0: \quad \text { there exists a constant } C>0 \text { such that, } \\
\text { for all } 0<r<1 \text { and } x \in F \text { we have } \\
\left.N_{r}\left(B\left(x, r^{\theta}\right) \cap F\right) \leqslant C\left(\frac{r^{\theta}}{r}\right)^{\alpha}\right\} .
\end{array}
$$

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ
- Lipschitz on any closed subinterval of $(0,1)$

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ
- Lipschitz on any closed subinterval of $(0,1)$
- not necessarily monotonic

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ
- Lipschitz on any closed subinterval of $(0,1)$
- not necessarily monotonic (but often is)

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ
- Lipschitz on any closed subinterval of $(0,1)$
- not necessarily monotonic (but often is)

Moreover,

$$
\operatorname{dim}_{\mathrm{B}} F \leqslant \operatorname{dim}_{\mathrm{A}}^{\theta} F \leqslant \min \left\{\frac{\operatorname{dim}_{\mathrm{B}} F}{1-\theta}, \operatorname{dim}_{\mathrm{A}} F\right\}
$$

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ
- Lipschitz on any closed subinterval of $(0,1)$
- not necessarily monotonic (but often is)

Moreover,

$$
\operatorname{dim}_{\mathrm{B}} F \leqslant \operatorname{dim}_{\mathrm{A}}^{\theta} F \leqslant \min \left\{\frac{\operatorname{dim}_{\mathrm{B}} F}{1-\theta}, \operatorname{dim}_{\mathrm{A}} F\right\}
$$

and so $\operatorname{dim}_{A}^{\theta} F \rightarrow \operatorname{dim}_{B} F$ as $\theta \rightarrow 0$,

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ
- Lipschitz on any closed subinterval of $(0,1)$
- not necessarily monotonic (but often is)

Moreover,

$$
\operatorname{dim}_{\mathrm{B}} F \leqslant \operatorname{dim}_{\mathrm{A}}^{\theta} F \leqslant \min \left\{\frac{\operatorname{dim}_{\mathrm{B}} F}{1-\theta}, \operatorname{dim}_{\mathrm{A}} F\right\}
$$

and so $\operatorname{dim}_{A}^{\theta} F \rightarrow \operatorname{dim}_{B} F$ as $\theta \rightarrow 0$, but $\operatorname{dim}_{A}^{\theta} F$ may not approach $\operatorname{dim}_{A} F$ as $\theta \rightarrow 1$.

Example 1: The Assouad spectrum

F-Yu 2017: $\operatorname{dim}_{A}^{\theta} F$ is

- continuous in θ
- Lipschitz on any closed subinterval of $(0,1)$
- not necessarily monotonic (but often is)

Moreover,

$$
\operatorname{dim}_{\mathrm{B}} F \leqslant \operatorname{dim}_{\mathrm{A}}^{\theta} F \leqslant \min \left\{\frac{\operatorname{dim}_{\mathrm{B}} F}{1-\theta}, \operatorname{dim}_{\mathrm{A}} F\right\}
$$

and so $\operatorname{dim}_{A}^{\theta} F \rightarrow \operatorname{dim}_{B} F$ as $\theta \rightarrow 0$, but $\operatorname{dim}_{A}^{\theta} F$ may not approach $\operatorname{dim}_{A} F$ as $\theta \rightarrow 1$.

F-Hare-Hare-Troscheit-Yu 2018: $\operatorname{dim}_{\mathrm{A}}^{\theta} F \rightarrow \operatorname{dim}_{\mathrm{qA}} F$ as $\theta \rightarrow 1$.

Example 2: intermediate dimensions

Recall

$$
\begin{array}{r}
\operatorname{dim}_{H} F=\inf \left\{\alpha>0: \text { for all } \varepsilon>0 \text { there exists a cover }\left\{U_{i}\right\}\right. \\
\text { such that } \left.\sum_{i}\left|U_{i}\right|^{\alpha}<\varepsilon\right\} .
\end{array}
$$

Example 2: intermediate dimensions

Recall

$$
\operatorname{dim}_{H} F=\inf \left\{\alpha>0: \text { for all } \varepsilon>0 \text { there exists a cover }\left\{U_{i}\right\}\right.
$$

$$
\text { such that } \left.\sum_{i}\left|U_{i}\right|^{\alpha}<\varepsilon\right\} \text {. }
$$

Falconer-F-Kempton 2018: Given $\theta \in(0,1)$, we restrict the range of available covers by insisting that $\left|U_{i}\right| \leqslant\left|U_{j}\right|^{\theta}$ for all i, j

Example 2: intermediate dimensions

Recall

$$
\operatorname{dim}_{H} F=\inf \left\{\alpha>0: \text { for all } \varepsilon>0 \text { there exists a cover }\left\{U_{i}\right\}\right.
$$

$$
\text { such that } \left.\sum_{i}\left|U_{i}\right|^{\alpha}<\varepsilon\right\} .
$$

Falconer-F-Kempton 2018: Given $\theta \in(0,1)$, we restrict the range of available covers by insisting that $\left|U_{i}\right| \leqslant\left|U_{j}\right|^{\theta}$ for all i, j

$$
\begin{aligned}
\operatorname{dim}_{\theta} F=\inf \{\alpha>0: & \text { for all } \varepsilon>0 \text { there exists a cover }\left\{U_{i}\right\} \\
& \text { with } \left.\left|U_{i}\right| \leqslant\left|U_{j}\right|^{\theta} \text { for all } i, j \text { such that } \sum_{i}\left|U_{i}\right|^{\alpha}<\varepsilon\right\}
\end{aligned}
$$

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ
- is monotonically increasing

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ
- is monotonically increasing
- is bounded between the Hausdorff and box dimension, that is

$$
\operatorname{dim}_{\mathrm{H}} F \leqslant \operatorname{dim}_{\theta} F \leqslant \operatorname{dim}_{\mathrm{B}} F
$$

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ
- is monotonically increasing
- is bounded between the Hausdorff and box dimension, that is

$$
\operatorname{dim}_{\mathrm{H}} F \leqslant \operatorname{dim}_{\theta} F \leqslant \operatorname{dim}_{\mathrm{B}} F
$$

- satisfies appropriate versions of the mass distribution principle and Frostman's lemma.

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ
- is monotonically increasing
- is bounded between the Hausdorff and box dimension, that is

$$
\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{\theta} F \leqslant \operatorname{dim}_{B} F
$$

- satisfies appropriate versions of the mass distribution principle and Frostman's lemma.

Moreover,

$$
\operatorname{dim}_{\theta} F \geqslant \operatorname{dim}_{\mathrm{A}} F-\frac{\operatorname{dim}_{\mathrm{A}} F-\operatorname{dim}_{\mathrm{B}} F}{\theta} .
$$

Therefore:

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ
- is monotonically increasing
- is bounded between the Hausdorff and box dimension, that is

$$
\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{\theta} F \leqslant \operatorname{dim}_{B} F
$$

- satisfies appropriate versions of the mass distribution principle and Frostman's lemma.

Moreover,

$$
\operatorname{dim}_{\theta} F \geqslant \operatorname{dim}_{\mathrm{A}} F-\frac{\operatorname{dim}_{\mathrm{A}} F-\operatorname{dim}_{\mathrm{B}} F}{\theta} .
$$

Therefore:

- if $\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F$, then $\operatorname{dim}_{\theta} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F$ for all $\theta \in(0,1)$

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ
- is monotonically increasing
- is bounded between the Hausdorff and box dimension, that is

$$
\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{\theta} F \leqslant \operatorname{dim}_{\mathrm{B}} F
$$

- satisfies appropriate versions of the mass distribution principle and Frostman's lemma.

Moreover,

$$
\operatorname{dim}_{\theta} F \geqslant \operatorname{dim}_{\mathrm{A}} F-\frac{\operatorname{dim}_{\mathrm{A}} F-\operatorname{dim}_{\mathrm{B}} F}{\theta} .
$$

Therefore:

- if $\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F$, then $\operatorname{dim}_{\theta} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F$ for all $\theta \in(0,1)$
- $\operatorname{dim}_{\theta} F \rightarrow \operatorname{dim}_{\mathrm{B}} F$ as $\theta \rightarrow 1$,

Example 2: intermediate dimensions

Falconer-F-Kempton 2018: $\operatorname{dim}_{\theta} F$

- is continuous in θ
- is monotonically increasing
- is bounded between the Hausdorff and box dimension, that is

$$
\operatorname{dim}_{H} F \leqslant \operatorname{dim}_{\theta} F \leqslant \operatorname{dim}_{B} F
$$

- satisfies appropriate versions of the mass distribution principle and Frostman's lemma.

Moreover,

$$
\operatorname{dim}_{\theta} F \geqslant \operatorname{dim}_{\mathrm{A}} F-\frac{\operatorname{dim}_{\mathrm{A}} F-\operatorname{dim}_{\mathrm{B}} F}{\theta} .
$$

Therefore:

- if $\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F$, then $\operatorname{dim}_{\theta} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}} F$ for all $\theta \in(0,1)$
- $\operatorname{dim}_{\theta} F \rightarrow \operatorname{dim}_{\mathrm{B}} F$ as $\theta \rightarrow 1$, but $\operatorname{dim}_{\theta} F$ may not approach $\operatorname{dim}_{\mathrm{H}} F$ as $\theta \rightarrow 0$.

Examples - countable sets

Recall: fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

Examples - countable sets

Recall: fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

$$
\operatorname{dim}_{\mathrm{H}} F=0 \quad \operatorname{dim}_{\mathrm{B}} F=\frac{1}{1+p} \quad \operatorname{dim}_{\mathrm{A}} F=1
$$

Examples - countable sets

Recall: fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

$$
\operatorname{dim}_{H} F=0 \quad \operatorname{dim}_{B} F=\frac{1}{1+p} \quad \operatorname{dim}_{A} F=1
$$

$$
\operatorname{dim}_{\theta} F=\frac{\theta}{\theta+p}
$$

Examples - countable sets

Recall: fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{H}} F=0 \quad \operatorname{dim}_{\mathrm{B}} F=\frac{1}{1+p} \quad \operatorname{dim}_{\mathrm{A}} F=1 \\
\operatorname{dim}_{\theta} F=\frac{\theta}{\theta+p} \quad \operatorname{dim}_{\mathrm{A}}^{\theta} F=\min \left\{\frac{1}{(1+p)(1-\theta)}, 1\right\}
\end{gathered}
$$

Examples - countable sets

Recall: fix $p>0$, and $F=\left\{n^{-p}: n \in \mathbb{N}\right\}$.

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{H}} F=0 \quad \operatorname{dim}_{\mathrm{B}} F=\frac{1}{1+p} \quad \operatorname{dim}_{\mathrm{A}} F=1 \\
\operatorname{dim}_{\theta} F=\frac{\theta}{\theta+p} \quad \operatorname{dim}_{\mathrm{A}}^{\theta} F=\min \left\{\frac{1}{(1+p)(1-\theta)}, 1\right\}
\end{gathered}
$$

Examples - self-affine carpets

F-Yu 2017: For $\theta \in(0, \log m / \log n]$

$$
\operatorname{dim}_{\mathrm{A}}^{\theta} F=\frac{\operatorname{dim}_{\mathrm{B}} F-\theta\left(\operatorname{dim}_{\mathrm{A}} F-\left(\operatorname{dim}_{\mathrm{A}} F-\operatorname{dim}_{\mathrm{B}} F\right) \frac{\log n}{\log m}\right)}{1-\theta}
$$

and for $\theta \in[\log m / \log n, 1)$

$$
\operatorname{dim}_{A}^{\theta} F=\operatorname{dim}_{A} F .
$$

Examples - self-affine carpets

F-Yu 2017: For $\theta \in(0, \log m / \log n]$

$$
\operatorname{dim}_{\mathrm{A}}^{\theta} F=\frac{\operatorname{dim}_{\mathrm{B}} F-\theta\left(\operatorname{dim}_{\mathrm{A}} F-\left(\operatorname{dim}_{\mathrm{A}} F-\operatorname{dim}_{\mathrm{B}} F\right) \frac{\log n}{\log m}\right)}{1-\theta}
$$

and for $\theta \in[\log m / \log n, 1)$

$$
\operatorname{dim}_{A}^{\theta} F=\operatorname{dim}_{A} F .
$$

Further examples

F-Miao-Troscheit 2014, F-Yu 2017, Troscheit 2017: Let $F \subset[0,1]^{d}$ be the limit set of Mandelbrot percolation.

Further examples

F-Miao-Troscheit 2014, F-Yu 2017, Troscheit 2017: Let $F \subset[0,1]^{d}$ be the limit set of Mandelbrot percolation. Almost surely, conditioned on non-extinction, for all $\theta \in(0,1)$:

$$
\operatorname{dim}_{\mathrm{A}}^{\theta} F=\operatorname{dim}_{\mathrm{B}} F<\operatorname{dim}_{\mathrm{A}} F=d
$$

Further examples

F-Miao-Troscheit 2014, F-Yu 2017, Troscheit 2017: Let $F \subset[0,1]^{d}$ be the limit set of Mandelbrot percolation. Almost surely, conditioned on non-extinction, for all $\theta \in(0,1)$:

$$
\operatorname{dim}_{\mathrm{A}}^{\theta} F=\operatorname{dim}_{\mathrm{B}} F<\operatorname{dim}_{\mathrm{A}} F=d
$$

García-Hare 2017: Let $F \subseteq R$ be a self-similar set.

Further examples

F-Miao-Troscheit 2014, F-Yu 2017, Troscheit 2017: Let $F \subset[0,1]^{d}$ be the limit set of Mandelbrot percolation. Almost surely, conditioned on non-extinction, for all $\theta \in(0,1)$:

$$
\operatorname{dim}_{\mathrm{A}}^{\theta} F=\operatorname{dim}_{\mathrm{B}} F<\operatorname{dim}_{\mathrm{A}} F=d
$$

García-Hare 2017: Let $F \subseteq R$ be a self-similar set. Then for all $\theta \in(0,1)$

$$
\operatorname{dim}_{H} F=\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{A}}^{\theta} F .
$$

Further examples

F-Miao-Troscheit 2014, F-Yu 2017, Troscheit 2017: Let $F \subset[0,1]^{d}$ be the limit set of Mandelbrot percolation. Almost surely, conditioned on non-extinction, for all $\theta \in(0,1)$:

$$
\operatorname{dim}_{\mathrm{A}}^{\theta} F=\operatorname{dim}_{\mathrm{B}} F<\operatorname{dim}_{\mathrm{A}} F=d
$$

The future and the present

Question

Can we view each dimension as a different facet of a single object?

The future and the present

Question

Can we view each dimension as a different facet of a single object?

