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Summary

• Motivation - projection theorems

• Self-similar sets

• Projections of self-similar sets

• Fractal percolation

• Projections of percolation sets

• Sections or slices of sets

• Projections→ fractal percolation→ sections

Joint work with Xiong Jin (Manchester)
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Hausdorff dimension

Throughout this talk we will generally work in R2.

The Hausdorff dimension of a set E ⊂ R2 is

dimH E = inf
{
s : for all ε > 0 there is a countable cover

{Ui} of E such that
∑
i

(diamUi )
s < ε

}
.

The Hausdorff dimension of a positive finite Borel measure µ on
Rn is

dimH µ = inf
{

dimH K : µ(K ) > 0
}
.
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Marstrand’s projection theorems

Theorem (Marstrand 1954) Let E ⊂ R2 be a Borel set.
For all θ ∈ [0, π)

(i) dimH projθE ≤ min{dimH E , 1}.
For almost all θ ∈ [0, π),

(ii) dimH projθE = min{dimH E , 1},
(iii) L(projθE ) > 0 if dimH E > 1.

[projθ denotes orthogonal projection onto the line Lθ, dimH is
Hausdorff dimension, L is Lebsegue measure on Lθ.]
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Exceptional directions

Marstrand’s theorem tells nothing about which particular directions
may have projections with dimension or measure smaller than
normal, i.e. when dimH projθE < min{dimH E , 1}, or dimH E > 1
and L(projθE ) = 0.

The set shown has dimension log 4/ log(5/2) = 1.51, but with
some projections of dimension < 1.
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Exceptional directions

The set of exceptional directions can’t be ‘too big’:

Theorem (Kaufman, 1968) If E ⊆ R2 and dimH E ≤ 1,

dimH{θ : dimH projθE < dimH E} ≤ dimH E .

– follows from an energy estimate

Theorem (F, 1982) If E ⊆ R2 and dimH E > 1,

dimH{θ : L(projθE ) = 0} ≤ 2− dimH E .

– proof uses Fourier transforms.

General problem: find sets or measures or classes of sets where
there are no exceptional directions for projections or where the
exceptional directions can be identified.

Here we consider self-similar sets and their random counterparts.
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Self-similar sets

Given an iterated function system of contracting similarities
f1, . . . , fm : R2 → R2 there exists a unique non-empty compact
E ⊂ R2 called a self-similar set such that

E =
m⋃
i=1

fi (E ). (∗)

We assume throughout that the union (∗) is disjoint or perhaps
‘nearly disjoint’ (i.e. OSC).
Write the similarities as

fi (x) = riOi (x) + ti
where 0 < ri < 1 is the scale factor, Oi is a rotation and ti is a
translation.

The family {f1, . . . , fm} has dense rotations if at least one of the
Oi is a rotation by an irrational multiple of π, equivalently if
group{O1, . . . ,Om} is dense in SO(2,R).
Otherwise {f1, . . . , fm} has finite rotations.
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Self-similar sets

Example: (Right-angled) Sierpiński triangle

f1(x , y) = (12x ,
1
2y); f2(x , y) = (12x + 1

2 ,
1
2y); f3(x , y) = (12x ,

1
2y + 1

2).

E = f1(E ) ∪ f2(E ) ∪ f3(E )
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finite rotations dense rotations

Self-similar sets
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More self-similar sets
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Dimension of self-similar sets

Let E be a self-similar set as above satisfying

E =
m⋃
i=1

fi (E ). (∗)

Provided the union in (∗) is disjoint or the open set condition
holds,

dimH E = s where
m∑
i=1

r si = 1,

where ri is the similarity ratio of fi .

E.g. Hausdorff dimension of the Sierpiński triangle is given by
3(1/2)s = 1 or s = log 3/ log 2.
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Exceptional directions for self-similar sets

Let E be the 1-dimensional
Sierṕınski triangle, so dimH E = 1.

For projections onto the line with
slope θ:
(a) if θ = p/q is rational,

and p + q 6≡ 0 (mod 3)
dimH projθE < 1;

and p + q ≡ 0 (mod 3)
projθE contains an interval,

(b) if θ is irrational,
dimH projθE = 1 but L(projθE ) = 0.

(Kenyon 1997, Hochman 2014)
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Self-similar sets with finite rotations

Theorem (Farkas 2014) Let E ⊂ R2 be a self-similar set defined by
a family {f1, . . . , fm} of similarities with finite rotations and with
dimH E < 1. Then there is at least one value of θ such that
dimH projθE < dimH E
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Self-similar sets with dense rotations

Theorem (Peres & Shmerkin 2009, Hochman & Shmerkin 2012)
Let E ⊂ R2 be a self-similar set defined by a family {f1, . . . , fm} of
similarities with dense rotations. Then

dimH projθE = min{dimH E , 1} for all θ.

Requires ideas from ergodic scenery flows, CP chains, r -scale
entropy, Marstrand’s theorem, ...

Corollary (Hochman & Shmerkin 2012) With E as above, for all
non-singular C 1 functions h : N → R, where N is a neighbourhood
of E ,

dimH h(E ) = min{dimH E , 1}.

This follows using the result for projections locally, noting that at
at very fine scales h ‘looks like’ a projection of a small copy of E in
some direction.
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Measure of projections

These methods are unable to show that for a self-similar set E
with dimH E > 1 all projections have positive measure. However,
this is very nearly so in the plane.

Theorem (Shmerkin & Solomyak 2014) Let E ⊂ R2 be the
self-similar attractor of an IFS with dense rotations with
1 < dimH E < 2. Then L(projθE ) > 0 for all θ except (perhaps)
for a set of θ of Hausdorff dimension 0.

The proof involves a careful analysis of how the Fourier transform
of the projections of a natural measure on E varies with θ.
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Mandelbrot percolation on a square

• Squares are repeatedly divided into 3× 3 subsquares
• Each square is retained independently with probability p (' 0.6).
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Mandelbrot percolation on a square

If p > 1/M2 then Ep 6= ∅ with positive probability, conditional on
which dimH Ep = 2 + log p/ logM almost surely.
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Projections of Mandelbrot percolation

Theorem (Rams & Simon, 2012) Let Ep be the Mandelbrot
percolation set obtained by dividing squares into M ×M
subsquares, each square being retained with probability p > 1/M2.
Conditional on Ep 6= ∅:

(i) dimH projθEp = min{dimH Ep, 1} for all θ ∈ [0, π),

(ii) if p > 1/M then dimH Ep > 1, and, for all θ ∈ [0, π),
projθEp contains an interval and in particular L(projθEp) > 0.

Proof depends on a geometrical analysis of how lines intersect the
grid squares.
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Percolation on a self-similar set

Start with a self similar set. At each stage of the iterated
construction, retain each component with probability p.
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Percolation on a self-similar set

If p > 1/m then Ep 6= ∅ with positive probability, conditional on
which dimH Ep = s, where p

∑m
i=1 r

s
i = 1
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Projection of percolation sets

If p > 1/m then Ep 6= ∅ with positive probability, conditional on
which dimH Ep = s, where p

∑m
i=1 r

s
i = 1, with ri the scaling

component of fi .

Theorem (Jin & F, 2014) Let E have dense rotations and let
p > 1/m. Then, conditional on Ep 6= ∅, almost surely

dimH projθEp = min{dimH Ep, 1} for all θ.

This is a special case of a more general result on random
multiplicative cascades on self-similar sets.

Let
W = (W1, . . . ,Wm) ∈ [0,∞)m

be a random vector such that
∑m

i=1 E(Wi ) = 1. For each k ≥ 0
and (i1, . . . , ik) ∈ {1, . . . ,m}k let

W = (W i1,...,ik
1 , . . . ,W i1,...,ik

m ) ∈ [0,∞)m

be i.i.d copies of W .
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Random multiplicative cascades on self-similar sets

Iterative construction of a self-similar set E =
⋃3

i=1 fi (E )
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Random multiplicative cascades on self-similar sets

Construction of a random cascade measure on E
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Random multiplicative cascades on self-similar sets

The condition
∑m

i=1 E(Wi ) = 1 means that for each i1, . . . , ij the
sequence of measures (µk)k≥j given by

µk(fi1 ◦ · · · ◦ fij (E ))

≡Wi1W
i1
i2
W i1,i2

i3
· · ·W i1,...,ij−1

ij

∑
ij+1,...,ik

W
i1,...,ij
ij+1

· · ·W i1,...,ik−1

ik

is a martingale, so a.s. µk converges on basic sets to an additive
set function which extends to the random cascade measure µ on
E , where µ is non-trivial with positive probability provided that∑m

i=1 E(W p
i ) <∞ for some p > 1.

Special cases:
Mandelbrot multiplicative cascades
Natural measures on fractal percolation sets
Branching constructions
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Projections of random multiplicative cascades

Theorem (F & Jin 2014) Let µ be a random multiplicative cascade
on a self-similar set E ⊂ R2 with dense rotations. Almost surely,
conditional on µ 6= 0,

dimH projθµ = min{dimH µ, 1} for all θ.

Very brief idea of proof First show almost surely:
(i) µ is exact dimensional,
(ii) for almost all θ, projθµ is exact dimensional with

dimH projθµ = min{dimH µ, 1}.
This uses an ergodic-theoretic argument to show that the natural
‘shift-like’ operator T on

Ω :=
{

(ii , i2, . . .),
(
W i : i ∈

⋃
k

{
1, . . . ,m}k

)}
is invariant and ergodic with respect to the Peyrière measure on Ω.

Then the space and operator are extended to include a rotation
element which is ergodic by the compact group extension theorem.
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Projections of random multiplicative cascades

Fix 0 < ρ < 1. For each q ∈ N, the IFS

{fi1fi2 · · · fik : ri1ri2 · · · rik−1
> ρq ≥ ri1ri2 · · · rik}

defines the same attractor E , and redefining the random vector W
appropriately we can get the same distribution of measures µ with
respect to this refined IFS. With Hr denoting ‘r -scale entropy’, for
the corresponding map Tρq , almost surely

dimH projθµ ≥
E(Hρq(projθµ))

q log(1/ρ)− c
− O(1/q) for all θ

→ dimH projθµ as q →∞
= min{dimH µ, 1} for almost all θ.

Now use lower-semicontinuity.
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Projections of random multiplicative cascades

Theorem (F & Jin 2014) Let µ be a random multiplicative cascade
on a self-similar set E ⊂ R2 with dense rotations. Almost surely,
conditional on µ 6= 0,

dimH projθµ = min{dimH µ, 1} for all θ.

Corollary Let E have dense rotations and let Ep be percolation on
E where p > 1/m. Then, conditional on Ep 6= ∅, almost surely

dimH projθEp = min{dimH Ep, 1} for all θ.

[Take W = (W1, . . . ,Wm) = (r s1X1, . . . , r
s
mXm),

where X1, . . . ,Xp are i.i.d. with Xi = 1 (prob p), = 0 (prob 1− p),
and check that dimH Ep = dimH µ.]

Corollary Let E have dense rotations and let p > 1/m. Then,
conditional on Ep 6= ∅, almost surely:

For all non-singular C1 functions h : N → R, where N is a
neighbourhood of E ,

dimH h(Ep) = min{dimH Ep, 1}.
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Projection of percolation sets

As in the case of deterministic self-similar sets of dimension > 1,
for percolation on self-similar sets we cannot quite guarantee
projections of positive length in all directions.

Theorem (F & Jin 2015) Let Ep ⊂ R2 be percolation on a
self-similar set E with dense rotations with 1 < dimH Ep < 2.
Then, almost surely, L(projθEp) > 0 for all θ except for a set of θ
of Hausdorff dimension 0.

The proof considers projections of a natural random measure µ on

Ep. We express µ̂ = µ̂0 µ̂1 in such a way that almost surely
dimH projθµ

0 = 1 for all θ, and for all θ except for a set of

dimension 0, |p̂rojθµ
1(t)| ≤ c |t|−ε, which implies that projθµ is

absolutely continuous.
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Marstrand’s section theorem

Theorem (Marstrand 1954) Let E ⊂ R2 be a Borel set with
dimH E > 1. Then,

(i) for all θ ∈ [0, π)

dimH(E ∩ proj−1θ a) ≤ dimH E − 1 for L-almost all a,

(ii) for L-almost all θ ∈ [0, π)

L
{
a ∈ Lθ : dimH(E ∩ proj−1θ a) ≥ dimH E − 1

}
> 0.

Kenneth Falconer Self-similar sets: Projections, Sections and Percolation



Marstrand’s section theorem

Question: When is

L
{
a ∈ Lθ : dimH(E ∩ proj−1θ a) ≥ dimH E − 1

}
> 0

for ‘all θ’ rather than ‘almost all θ’ ?

The graph of a function can have dimension as large as 2.
However, E ∩ proj−10 a is a single point for all a ∈ L0, so
dimH(E ∩ proj−10 a) = 0.
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Marstrand’s section theorem

Question: When is

L
{
a ∈ Lθ : dimH(E ∩ proj−1θ a) ≥ dimH E − 1

}
> 0

for ‘all θ’ rather than ‘almost all θ’ ?

Furstenberg (2008) addressed this for self-similar sets with finite
rotations. He introduced the notion of dimension conservation for
when this was the case.

For the case of dense rotations, to obtain such results on sections
of a deterministic self-similar E we use the results on projections of
random percolation subsets Ep.
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Using percolation to analyse sections of deterministic sets

To find the Hausdorff dimension of subsets of a self-similar set E it is
enough to take covers by ‘basic sets’ of the iterative construction of E ,
that is sets of the form Ui = fi1 ◦ · · · ◦ fik (D).
Thus, for F ⊂ E :

dimH F = inf
{
s : for all ε > 0 there are basic sets {Ui}

with F ⊂
⋃
i

Ui and
∑
i

(diamUi )
s < ε

}
.
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Using percolation to analyse sections of deterministic sets

We can use (random) percolation sets to test the dimension of
deterministic (i.e. non-random) subsets of self-similar sets.

Lemma Let E be a self-similar set constructed iteratively with
basic sets {Ui}. Let Ep be obtained by fractal percolation on the
basic sets {Ui}, and suppose for some α > 0

P{Ui survives the percolation process} ≤ c(diamUi)
α for all i.

If F ⊂ E and dimH F < α then Ep ∩ F = ∅ almost surely.

– In particular, if F ⊂ E and Ep ∩ F 6= ∅ with positive probability,
then dimH F ≥ α.
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Using percolation to analyse sections of deterministic sets

Lemma Let Ep be obtained from the self-similar set E by fractal
percolation on the basic sets {Ui}, and suppose

P{Ui survives the percolation process} ≤ c(diamUi)
α for all i.

If F ⊂ E and dimH F < α then Ep ∩ F = ∅ almost surely.

Proof Given ε > 0 let I be a family of indices such that

F ⊂
⋃
i∈I

Ui and
∑
i∈I

(diamUi)
α < ε.

Then

E
(
#{i ∈ I : Ep∩Ui 6= ∅}

)
≤
∑
i∈I

P{Ui survives} ≤ c
∑
i∈I

(diamUi)
α < cε,

so
P
(
Ep ∩ F 6= ∅

)
≤ P

(
Ep ∩

⋃
i∈I

Ui 6= ∅
)
< cε.

This is true for all ε > 0, so P
(
Ep ∩ F 6= ∅

)
= 0.
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Using percolation to analyse sections of deterministic sets

Corollary Let E be a self-similar set constructed iteratively using a
hierarchy of basic sets {Ui}. Let Ep be the random set obtained by
some fractal percolation process on the {Ui} and suppose that for
some α > 0

P{Ui survives the percolation process} ≤ c(diamUi)
α for all i.

For each θ, if
P
{
L(projθEp) > 0

}
> 0,

then
L
{
a ∈ Lθ : dimH(E ∩ proj−1θ a) ≥ α

}
> 0.
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Using percolation to analyse sections of deterministic sets

Proof Let
S =

{
a ∈ Lθ : dimH(E ∩ proj−1θ a) < α

}
.

For each a ∈ S , taking F = E ∩ proj−1θ a in the lemma,

Ep ∩ proj−1θ a = Ep ∩ E ∩ proj−1θ a = ∅

almost surely. In other words, for each a ∈ S , a 6∈ projθEp with
probability 1.
By Fubini’s theorem, with probability 1, a 6∈ projθEp for L-almost
all a ∈ S .
Hence, with positive probability,

0 < L(projθEp) = L
(
(projθEp) \ S

)
≤ L

(
(projθE ) \ S

)
.

Kenneth Falconer Self-similar sets: Projections, Sections and Percolation



Sections of self-similar sets

Theorem (F & Jin 2015) Let E ⊂ R2 be a self-similar set with
dense rotations with 1 < dimH E ≤ 2. Then, for all ε > 0:

L
{
a ∈ Lθ : dimH(E ∩ proj−1θ a) > dimH E − 1− ε

}
> 0

for all θ except for a set of θ of Hausdorff dimension 0.

Proof for E a self-similar set made up of m copies at scale r :

Take p = m−1r−1−ε so dimH Ep > 1 with positive probability, in
which case by the projection result, L(projθEp) > 0 for all θ except
for a set of Hausdorff dimension 0. Also

P{Ui survives the percolation process} ≤ c(diamUi)
log p/ log r

so by the Corollary

L
{
a ∈ Lθ : dimH(E ∩ proj−1θ a) ≥ α

}
> 0

where
α = log p/ log r = (− logm− (1 + ε) log r)/ log r = dimH E − 1− ε.
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Sections of self-similar sets

Theorem (F & Jin 2015) Let E ⊂ R2 be a self-similar set with
dense rotations with 1 < dimH E ≤ 2. Suppose E is connected or
projθE is an interval for all θ. Then for all ε > 0

dimH

{
a ∈ Lθ : dimB(E ∩ proj−1θ a) > dimH E − 1− ε

}
= 1

for all θ.

Theorem (F & Jin 2015) Let Ep be the Mandelbrot percolation set
obtained by dividing squares into M ×M subsquares, each square
being retained with probability p > 1/M2. Then, for all ε > 0,
conditional on Ep 6= ∅,

L
{
a ∈ Lθ : dimH(Ep ∩ proj−1θ a) > dimH Ep − 1− ε

}
> 0

for all θ.

Proof. Similar idea, using that the intersection of two independent
percolation sets Ep ∩ Eq has the same distribution as the single
percolation set Epq.
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Theorem (F & Jin 2015) Let E ⊂ R2 be a self-similar set with
dense rotations with 1 < dimH E ≤ 2. Suppose E is connected or
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dimH
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being retained with probability p > 1/M2. Then, for all ε > 0,
conditional on Ep 6= ∅,
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a ∈ Lθ : dimH(Ep ∩ proj−1θ a) > dimH Ep − 1− ε

}
> 0

for all θ.

Proof. Similar idea, using that the intersection of two independent
percolation sets Ep ∩ Eq has the same distribution as the single
percolation set Epq.
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Thank you!
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